Today

- Finish diodes
- Representing information

There are only 10 types of people in the world: Those who understand binary and those who don’t.
Representing Information Using Voltage
Representing Information Using Voltage

Analog representation: the precise voltage matters.

• Suppose we observed voltage v on a wire (e.g., an output from an accelerometer)
• The encoded quantity is some function of that voltage:

$$acceleration = f(v)$$
Representing Information Using Voltage

The simplest form assumes a linear relationship:

\[\text{acceleration} = \alpha \, v + \beta \]
Analog Encoding

Electrical noise in the circuit can alter the “true” voltage. E.g.:

• A device is turned on
• A motor is turned on or the direction is reversed

External sources can affect analog signals:
• Cell phones
Representing Information Using Voltage
Representing Information Using Voltage

• Digital representation: the value to be represented is binary – i.e., true or false
• For example, a bit b is:

$$b = \begin{cases}
\text{true} & v > 2.5 \text{ Volts} \\
\text{false} & \text{otherwise}
\end{cases}$$
Representing Information Using Voltage

We typically use the shorthand:

\[0 \quad = \quad \text{false} \]

\[1 \quad = \quad \text{true} \]
Computing In Binary
(i.e., Logic)
What is the Gate?

• Logical Symbol:

• Algebraic Notation:

• Truth Table:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
The NOT Gate

• Logical Symbol:

• Algebraic Notation: \(B = \overline{A} \)

• Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
And This Gate?

- Logical Symbol:

- Algebraic Notation: $C = ?$

- Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
The “AND” Gate

• Logical Symbol:

• Algebraic Notation: \(C = A \cdot B = AB \)

• Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
And This Gate?

- **Logical Symbol:**

- **Algebraic Notation:** $C = ?$

- **Truth Table:**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
The “OR” Gate

- Logical Symbol:

- Algebraic Notation: \(C = A + B \)

- Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Exclusive OR ("XOR") Gates

- Logical Symbol:

- Algebraic Notation: \(C = A \oplus B \)

- Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Exclusive OR ("XOR") Gates

- Logical Symbol:

```
  A
 / \
/    \
B     C
```

- Algebraic Notation: $C = A \oplus B$

- Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
2-Input Multiplexer

A multiplexer is a device that selects between two input lines

• A & B are the inputs
• S is the selection signal (also an input)
• C is a copy of A if S=0
• C is a copy of B if S=1
2-Input Multiplexer

A multiplexer is a device that selects between two input lines

- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1
A multiplexer is a device that selects between two input lines

- A & B are the inputs
- S is the selection signal (also an input)
- C is a copy of A if S=0
- C is a copy of B if S=1
Suppose we want to select from between \(N \) different inputs.

- This requires more than one select line. How many?
N-Input Multiplexer

How many select lines?

- \(M = \log_2 N \)
- \(N = 2^M \)

What would the \(N=8 \) implementation look like?
Back to Binary…

With a binary digit, we can only represent two different values…

How do we represent more?
Back to Binary…

How do we represent more?

• As in the decimal number system, we introduce multiple digits…
Binary Encoding

How do we convert from binary to decimal in general?

<table>
<thead>
<tr>
<th>B2</th>
<th>B1</th>
<th>B0</th>
<th>decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Binary to Decimal Conversion

\[value = B_0 + B_1 \times 2^1 + B_2 \times 2^2 + B_3 \times 2^3 + \ldots \]

\[value = \sum_{i=0}^{N-1} B_i \times 2^i \]

How do we convert from decimal to binary?
Decimal to Binary Conversion

```c
int value;

For each i: B[i] = 0

for(i = 0; value > 0; ++i) {
    B[i] = remainder of: value/2;
    value = value/2;
}
```
Binary Addition

Consider the following binary numbers:

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

How do we add these numbers?
Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1
1
Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1

And we have a carry now!
Binary Addition

00100110
00101011

001

And we have a carry again!
Binary Addition

\[
\begin{array}{cccccccc}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 1 \\
\end{array}
\]

and again!
Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1
↓
1 0 0 0 1
Binary Addition

\[
\begin{array}{c}
0 0 1 0 0 1 1 0 \\
0 0 1 0 1 0 1 1 \\
\downarrow \\
0 1 0 0 0 1
\end{array}
\]

One more carry!
Binary Addition

0 0 1 0 0 1 1 0
0 0 1 0 1 0 1 1
0 1 0 1 0 0 0 1
Binary Addition

Behaves just like addition in decimal, but:

• We carry to the next digit any time the sum of the digits is 2 (decimal) or greater
Binary Counting...
Negative Numbers

So far we have only talked about representing non-negative integers

• What can we add to our binary representation that will allow this?
Representing Negative Numbers

One possibility:

• Add an extra bit that indicates the sign of the number
• We call this the “sign-magnitude” representation
Sign Magnitude Representation

+12 0 0 0 0 1 1 0 0
Sign Magnitude Representation

+12 0 0 0 0 1 1 0 0

-12 1 0 0 0 1 1 0 0
Sign Magnitude Representation

<table>
<thead>
<tr>
<th>Signed Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12</td>
<td>0 0 0 0 1 1 0 0</td>
</tr>
<tr>
<td>-12</td>
<td>1 0 0 0 1 1 0 0</td>
</tr>
</tbody>
</table>

What is the problem with this approach?
Sign Magnitude Representation

What is the problem with this approach?

• Some of the arithmetic operators that we have already developed do not do the right thing
Sign Magnitude Representation

Operator problems:

• For example, we have already discussed a counter (that implements an ‘increment’ operation)

\[\begin{array}{c}
-12 \\
10001100
\end{array} \]
Sign Magnitude Representation

Operator problems:

-12 1 0 0 0 1 1 0 0

Increment
Sign Magnitude Representation

Operator problems:

-12

\[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\end{array} \]

Increment

\[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\end{array} \]
Sign Magnitude Representation

Operator problems:

-12 1 0 0 0 1 1 0 0

Increment

-13 1 0 0 0 1 1 0 1

!!!!
Representing Negative Numbers

An alternative:

• When taking the additive inverse of a number, invert all of the individual bits
• The leftmost bit still determines the sign of the number
One’s Complement Representation

12 0 0 0 0 1 1 0 0

Invert

-12 1 1 1 1 0 0 1 1
One’s Complement Representation

12

0 0 0 0 1 1 0 0

-12

1 1 1 1 0 0 1 1

1 1 1 1 0 1 0 0
One’s Complement Representation

12 → 0 0 0 0 1 1 0 0

-12

Invert

1 1 1 1 0 0 1 1

Increment

-11

1 1 1 1 0 1 0 0
One’s Complement Representation

What problems still exist?
One’s Complement Representation

What problems still exist?

• We have two distinct representations of ‘zero’:

 0 0 0 0 0 0 0 0

 1 1 1 1 1 1 1 1
One’s Complement Representation

What problems still exist?
• We can’t directly add a positive and a negative number:

\[
\begin{align*}
12 & \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \\
+ & \quad + \\
-5 & \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0
\end{align*}
\]
One’s Complement Representation

12
+ 0 0 0 0 1 1 0 0
-5 + 1 1 1 1 1 0 1 0

0 0 0 0 0 1 1 0
One’s Complement Representation

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 0

6 0 0 0 0 0 1 1 0

!!!!
Today

- Two’s complement numbers
- Binary math
- Bit-wise operators

There are only 10 types of people in the world: Those who understand binary and those who don't.
Representing Negative Numbers

An alternative:
(a little intuition first)

0 0 0 0 0 0 0 0

Decrement
Representing Negative Numbers

An alternative:
(a little intuition first)

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decrement
Representing Negative Numbers

An alternative:
(a little intuition first)

0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1

Define this as
-1 1 1 1 1 1 1 1

Decrement
Representing Negative Numbers

A few more numbers:

3 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
-1 1 1 1 1 1 1 1 1
-2 1 1 1 1 1 1 1 0
-3 1 1 1 1 1 0 1
Two’s Complement Representation

In general, how do we take the additive inverse of a binary number?
Two’s Complement Representation

In general, how do we take the additive inverse of a binary number?

- Invert each bit and then add ‘1’
Two’s Complement Representation

Invert each bit and then add ‘1’

5

0 0 0 0 0 1 0 1

Two’s complement

-5

1 1 1 1 1 0 1 1
Two’s Complement Representation

Now: let’s try adding a positive and a negative number:

\[
\begin{align*}
12 & \quad 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \\
+ & \quad + \\
-5 & \quad 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \\
\end{align*}
\]
Two’s Complement Representation

Now: let’s try adding a positive and a negative number:

\[
\begin{array}{c}
12 \\
+ \\
-5
\end{array}
\quad
\begin{array}{c}
0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \\
+ \\
1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1
\end{array}
\]

\[
0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1
\]
Two’s Complement Representation

Now: let’s try adding a positive and a negative number:

12 0 0 0 0 1 1 0 0
+ +
-5 1 1 1 1 1 0 1 1

7 0 0 0 0 0 1 1 1
Two’s Complement Representation

Two’s complement is used for integer representation in today’s processors.
Two’s Complement Representation

Two’s complement is used for integer representation in today’s processors.

One oddity: we can represent one more negative number than we can positive numbers.
Implementing Subtraction

How do we implement a ‘subtraction’ operator?
(e.g., A – B)
Implementing Subtraction

How do we implement a ‘subtraction’ operator?
(e.g., A – B)

• Take the 2s complement of B
• Then add this number to A
Other Useful Number Systems

You already know:

• Decimal – base 10
• Binary – base 2
Other Useful Number Systems

You already know:
- Decimal – base 10
- Binary – base 2

But it is common to also see:
- Octal – base 8
- Hexadecimal – base 16
Other Number Systems

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Octal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Octal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>12</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>14</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>15</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>16</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>17</td>
<td>F</td>
</tr>
</tbody>
</table>
Binary to Hex Conversion

What is the hex equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

011000111001001
Binary to Hex Conversion

What is the hex equivalent of:

011000111001001

Partition the binary digits into groups of four – starting from the right-hand-side
Binary to Hex Conversion

What is the hex equivalent of:

0 1 1 | 0 0 0 1 | 1 1 0 0 | 1 0 0 1

Convert the individual groups

3 1 C 9
Binary to Hex Conversion

In C notation (the programming language), we will write:

0x31C9
Binary to Octal Conversion

What is the octal equivalent of:

0110001111001001
Binary to Octal Conversion

What is the octal equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

Partition the binary digits into groups of three – starting from the right-hand-side
Binary to Octal Conversion

What is the octal equivalent of:

0 1 1 0 0 0 1 1 1 0 0 1 0 0 1

Convert the individual groups

3 0 7 1 1
Binary to Octal Conversion

In C notation (the programming language), we will write:

030711
Octal or Hex to Binary

How do we perform this type of conversion?
Octal or Hex to Binary

How do we perform this type of conversion?

• For each octal or hex digit, convert to the binary equivalent (3 or 4 binary digits, respectively)

• Append the binary digits together
Binary Notation in C

How would we write a binary constant in C?
Binary Notation in C

How would we write a binary constant in C?

0b011000111001001
Bit-Wise Operators

If A and B are bytes, what does this code mean?

\[C = A \& B; \]
Bit-Wise Operators

If A and B are bytes, what does this code mean?

\[C = A \& B; \]

The corresponding bits of A and B are ANDed together
Bit-Wise AND

01011110 \hspace{1cm} A

10011011 \hspace{1cm} B

? \hspace{1cm} C = A \& B
Bit-Wise AND

A

B

C = A & B
Bit-Wise AND

\[
\begin{align*}
A &= 01011110 \\
B &= 10011011 \\
C &= A \& B = 00011010
\end{align*}
\]
Bit-Wise AND

```
0 1 0 1 1 1 1 0  A
1 0 0 1 1 0 1 1  B
```

\[
C = A \& B
\]

\[
1 0
\]
Bit-Wise AND

\[\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\hline
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array} \]

\[A \]

\[B \]

\[C = A \& B \]
Logical AND

0 1 0 1 1 1 1 0 \quad A

1 0 0 1 1 0 1 1 \quad B

\text{???} \quad C = A \&\& B
Logical AND

0 1 0 1 1 1 1 0 \rightarrow true

1 0 0 1 1 0 1 1

C = A && B
Logical AND

\[
\begin{array}{c}
0 1 0 1 1 1 1 0 \\
1 0 0 1 1 0 1 1 \\
\hline
???
\end{array}
\]

\[
A \quad B \quad C = A \land B
\]

true
true
true
Logical AND

\[\begin{align*}
01011110 & \quad \text{A} \\
10011011 & \quad \text{B} \\
\text{???} & \quad \text{C} = \text{A} \land \text{B}
\end{align*} \]
Logical AND

\[
\begin{align*}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & \quad A \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & \quad B \\
\downarrow \quad true & \quad true & \quad true \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \quad C = A \land B
\end{align*}
\]
Logical AND

\[
\begin{array}{cccccccc}
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
\end{array}
\quad A
\]

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\quad B
\]

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\quad C = A \&\& B
\]

NOTE: we are assuming an 8-bit value
Representing Logical Values

Most of the time, we represent logical values using a multi-bit value. (e.g., using 8 or 16 bits). The rules are:

- A value of zero is interpreted as \textit{false}
- A non-zero value is interpreted as \textit{true}
Representing Logical Values

A logical operator will give a result of \textit{true} or \textit{false}:

- \textit{false} is represented with a value of zero (0)
- \textit{true} is represented with a value of one (1)
Other Operators

<table>
<thead>
<tr>
<th>LOGICAL</th>
<th>Bit-Wise</th>
</tr>
</thead>
<tbody>
<tr>
<td>• OR:</td>
<td></td>
</tr>
<tr>
<td>• NOT:</td>
<td>!</td>
</tr>
<tr>
<td>• XOR:</td>
<td>^</td>
</tr>
<tr>
<td>• Shift left:</td>
<td><<</td>
</tr>
<tr>
<td>• Shift right:</td>
<td>>></td>
</tr>
</tbody>
</table>

When coding: keep this distinction straight
Putting the Bit-Wise Operators to Work: Bit Manipulation

Assume a variable A is declared as such:

```c
uint8_t A;
```

What is the code that allows us to set bit 2 of A to 1? (we start counting bits from 0)
Bit Manipulation

What is the code that allows us to set bit 2 of A to 1? (we start counting bits from 0)

\[A = A | 4; \]
Bit Manipulation

What is the code that allows us to set bit 2 of A to 0?
Bit Manipulation

What is the code that allows us to set bit 2 of A to 0?

\[A = A \& 0xFB; \]

or

\[A = A \& \sim 4; \]
Bit Shifting

```c
uint8_t A = 0x5A;
uint8_t B = A << 2;
uint8_t C = A >> 5;
```

What are the values of B and C?
What mathematical operations have we performed?