Digital to Analog and Back

• Analog: encoding information using voltage
 – Many sensors use voltage as an output
 – Motors torque is determined by current passing through the motor
• Digital: encoding information with bits

How to move between these?
Digital to Analog Conversion

In class exercise…
Analog to Digital Conversion

For a given voltage, what is the digital representation of the voltage?

• How would we implement this?
Analog to Digital Conversion

Board exercise…
Analog to Digital Conversion

For a given voltage, what is the digital representation of the voltage?

• Common approach: successive approximation
 – Use a D2A converter to produce a voltage V
 – Compare this with the input voltage V_{in}
 – If different, then increase/decrease V
 – Repeat (stopping when V is close to V_{in})
A2D in the Mega2560

• The mega2560 contains hardware that implements successive approximation
• 16 mega2560 pins can be configured as analog input pins
Mega2560: The Connections

AREF: (for our purposes) connect to +5V

- ADC will measure voltages between 0 and AREF

Connect input analog signal to the appropriate ADC pin
A Code Example: Configuration

// Initialize adc
adc_set_reference(ADC_REF_AREF); // Use the AREF reference pin
adc_set_adlar(0); // For our purposes, always use 0
adc_set_prescalar(ADC_PRESCALAR_128); // Necessary with 16MHz clock
// and 10 bit resolution

// Turn on ADC Converter
adc_set_enable(ADC_ENABLE);
A Code Example: Use

```c
uint16_t val;

// Can do the following an arbitrary number of times
adc_set_channel(ADC_CHANNEL_0); // ADC0
// Actually start a conversion
adc_start_conversion();

// Could go off and do something else for a while

val = adc_read(); // Read the analog value
```
Analog Conversion Notes

• All functions are provided in oulib
• See OUlib documentation for the definition of constants

• Can get to the example code from the Atmel HowTo
 www.cs.ou.edu/~fagg/classes/general/atmel
Analog Conversion Notes

• Setting the maximum voltage:

```c
adc_set_reference(ADC_REF_AREF); // Use the AREF reference pin
```

• Can also use a fixed voltage (+2.56V):

```c
adc_set_reference(ADC_REF_2p56V);
```
Analog Conversion Notes

• Determining how fast the conversion requires:

```c
adc_set_prescalar(ADC_PRESCALAR_128);  // Necessary with 16MHz clock
   // and 10 bit resolution
```

• Conversion requires:
 128 * 15 / 16000000 seconds
 – Can convert faster, but may not get the full 10-bit resolution
Analog Conversion Notes

• Reading out the value:

```c
val = adc_read(); // Read the analog value
```

• Blocks until conversion is complete
• Will return a value between 0 and 0x3FF (1023)