Groups

• Group 1: Aleshinloye, Harrison, Lan, Van Duyne(*)

• Group 2: Terrill, Russell, Mills, Lee

• Group 3: Langston, Aguayo, Greenway, Knapp(*)

• Group 4: Robinson, Tankersley, Lanham, Couch

• Group 5: Verdin, Pawlowski, Rosa

* = new platform
Today: Project 2

Group work for today:

• First circuit
• Essential software pieces
 – Reading compass heading
 – Computing compass error
 – Computing compass derivative
 – Displaying heading or error with 4 LEDs
 – Displaying rotational velocity with 5 LEDs

As you complete one or two tasks, show them to Di or Me
First Circuit

Pieces you need to assemble (after drawing a circuit diagram):

• Atmel with crystal
• Programming interface
• LEDs
 – Circle of LEDs for displaying heading or heading error
 – Line of LEDs for displaying heading velocity
Circuit Starting Point

Remember to reserve PD0 and PD1 for the serial connection to the heli. PB0, PB1, and PB2 are available.
Reading the Compass

```c
int16_t get_heading(void)
```

- Returns the heading in 10ths of a degree: values between -1799 and 1800
Reading the Compass

• Your atmel sends: ‘c’ (1 character)
• The heli responds with:
 “cDDDD\n\r”
 – There are always 4 decimal digits
 – Value is between 0000 and 3599
Reading the Compass

```c
int16_t get_heading(void)
```

- Ask for the heading from the heli
- Translate the characters received from the heli into a number between 0 and 3599
- Translate this number to one that is between -1799 and 1800
 - Note: the heading that is represented must be the same after this transformation
Computing Error

int16_t compute_error(int16_t goal, int16_t heading)

Returns the heading error in 10ths of a degree:
 error = goal - heading
 But: return value must be between -1799 and 1800

Positive errors correspond to the craft being clockwise from the goal
Computing Velocity

```c
int16_t compute_derivative(int16_t heading_last,
                          int16_t heading_current)
```

Returns the heading velocity in 10^{th}s of a degree per second:

- Assume the two samples are 100ms apart
- As with the error computation, you must handle the “wrap-around” cases
void display_orient(int16_t theta)

Display either an absolute heading or a heading error using a set of LEDs

• Use 4 LEDs for this
• How do you decide when to turn on each of the LEDs given theta? Can you do better than 90 degree resolution?
Displaying Velocity

```c
void display_derivative(int16_t velocity)
```

Display the rotational velocity using a set of LEDs

- 5 LEDs
- How do you decide when to turn on each of the LEDs given theta?
Main Loop

Wrap all of the pieces together:

• Every 100ms, take an orientation sample, compute error and derivative, update display

• See the code skeleton in the project specification