Final Exam

• When: 8:00-10:00 am Monday, May 5th
• Location: here (Carson 441)

• 1/3: midterm material
 – See lecture notes for midterm preparation
• 2/3: material since midterm

• 1 page of personal notes
• No electronic devices/books/other notes
Final Preparation

• Exam discussion on D2L
 – Post sample questions (and answers)
 – Some may appear on the exam

• Look to homework assignments and exams from last year (both the midterm and final) for the types of questions
 – Note that class coverage in previous years has been different
Pre-Midterm Material

• Basic gates
• Boolean algebra
• Digital circuits and circuit reduction
• Number representations (binary, hex)
• Bit-wise operators
• Sequential logic (flip-flops)
• Components of microprocessors
• Memory behavior (input/output signals, buses, addressing)
Key Microprocessor Components

- General- versus special-purpose registers
- Instruction decoder
- Data memory (RAM)
- Program memory (EEPROM in our case)
- I/O modules
 - Digital input/output
 - Serial UART
Special-Purpose Registers

What does each do?

• Program counter
• Instruction register
Timer/Counters

• Prescalars
• Counters (hardware)
 – Timer0, timer2: 8-bit
 – Timer1: 16-bit
• Interrupts on timerX overflow

• Computing timerX count frequencies/periods
• Computing timerX interrupt frequencies/periods
Interrupts

• What are they?
• Types of interrupts
• Interrupt service routines. Examples:
 – Pulse Width Modulation (PWM)
 – Producing digital signals of various frequencies (e.g., can introduce software counters, too)
 – Sensor control (sonar)
 – Serial buffering
Interrupt Woes

The Shared Data Problem

• One segment of code can be interrupted at any time to execute another segment of code

• Both access the same data structures

• Solution: ensure that a critical section of code cannot be interrupted
 – In our case: use disable/enable interrupts
Input/Output Systems

• Polling vs interrupt-driven input/output

• Buffers
 – Why do we need buffers?
 – Circular buffer implementation

• Modes of communication:
 – Parallel, serial, analog, PWM
Serial Communication

• What is it?
• How does it work?
 – Start/stop/parity bits
• Hardware implementation
 – A byte is shifted out one bit at a time
• Software implementation
 – getchar(), putchar()
Finite State Machines

• Definition
 – States
 – Events
 – Transition function
 – Outputs and output function
• State transition diagrams
• FSMs for control
Basics of Digital Port I/O

- Input/output selection
- Output value
- Input
C Code

• Be prepared to read (and possibly fix) simple C code
• Look to lecture discussions of code and your projects as you prepare
Analog Processing

• Digital to analog:
 – Pulse-width modulation
 – Resistive network

• Analog to digital:
 – Fixed threshold
 – Successive approximation of threshold
Miscellaneous

• H-bridges: controlling direction of current flow through a DC motor
• Controlling magnitude of current flow: Pulse Width Modulation
 – DC motors
 – LEDs