Solderless Breadboards

Power bus
(red)
Ground bus
(blue)
Component bus

Note that the two sides are not connected
Wiring Standards

When possible, use wire colors for different types of signals:

• Black: ground
• Red: power
• Other: various signals
Clean Wiring

A clean breadboard will make debugging easier – and it makes circuits more robust

www.linefollowing.com
tangentsoft.net
Care with Power

• Only insert components and wires into the breadboard when power is disconnected
• “Wire, check-twice, then power”
 – Never reverse power and ground (this is a very common mistake)
• Most chips that we will use expect +5V
 – More can destroy the chips
 – We will use DC/DC converters to step battery voltages down to +5V
Care of Chips

• Use insertion and extraction tools: never your fingers
• Minimize your contact with pins: static electricity can destroy a chip
• Use a wrist strap when you handle chips

www.a7vtroubleshooting.com
www.chantronics.com.au
www.hvwtech.com
TTL Chips: 2-Input AND Gates

Chip number: 7408

Pin 1 is marked on the chip

Ground

Power

Vcc

GND

www.dcs.warwick.ac.uk

www2.117.ne.jp
Constant Inputs

How do we configure a chip input as a constant?
How do we configure a chip input as a constant?

- For a constant 0: connect to ground
- For a constant 1: use a pull-up resistor to +5V (e.g., 10K ohm)
Wiring Procedure (Suggested)

• Power supply
• Power/ground buses
• Insert primary components
• Wire power/ground for components
• Add signals and remaining components
• Test incrementally
Debugging Techniques

• Multimeter:
 – Use *voltage mode* to check logic levels
 – Use *continuity mode* to confirm connections (but never with power turned on!)

• Oscilloscope:
 – View voltage as a function of time on 2 channels

• Test incrementally
• Test intermediate sub-circuits
Debugging Techniques

Wire in LED to indicate logic level on a line

- For most components, do not allow the line to be driven by more than 20mA (check the specs if in doubt)

- Note that in this circuit, the LED turns on when logic level is LOW
Debugging/Safety Hints

• Start by testing your circuit prior to connecting motor power
• Before connecting power: position arms so that they are near their default positions (middle of the joint ranges)
• You can test the wheel control with the robot up “on blocks” (so that the wheels are not touching the ground)
A Basic Circuit

(Projects 2-4)
A Basic Circuit

- Connect through adapter to AVR ISP
- Do not reverse the pins!
A Basic Circuit

Extra LED allows you to see when a program is being downloaded.
A Basic Circuit

16 MHz crystal
- Optional!
- Without it, your processor will run at 1MHz (in general, we will use 16MHz clock)
Mega8 Wierdnesses

• The programmer relies on the clock being used by the mega8
 – The programmer speed must be no greater than \(\frac{1}{4} \) of this clock (lower is safer)
• Out of “the box,” this clock is the internal one (1 MHz)
 – Set the programmer to operate at \(\sim 100 \text{KHz} \)
 – Configure the “fuse bits” to use the external crystal
 – Set programmer back to 1-4 MHz
Configuring the Clocks

AVR Studio (after you are connected to the programmer):

• Programmer frequency:
 – Board menu
 – Set ISP frequency
 – Write

• Chip clock configuration:
 – Fuses menu
 – Select last option: high freq crystal/resonator;
 16K CK + 64 ms
 – Program
Configuring the Clocks

AVRdude users:
• See the Atmel HOWTO
Lab Procedures

• No food or drink are allowed in the lab.

• Before leaving the lab, please be sure to clean up your workspace.

• Because some equipment may be in short supply, please coordinate with others who will need these resources

• Never place dead components back into the stock (instead – place them in the ‘graveyard’)

Lab Procedures

• No equipment or supplies may leave the lab without the permission of the monitor.

• No books may leave the lab.

• Please clear all guests with the lab monitor.

• Unless you have prior permission, please do not handle the projects of other class members.
Lab Procedures

• Always check your wiring before you power up your circuit (especially your power and ground connections).

• When removing chips from breadboards, always use an appropriate tool (not your fingers!).

• If you break something, please report it (don't just put it away).

• You are expected to supply and configure your own laptop computers for project use.