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Today

Sequential logic

• Latches

• Flip-flops

• Counters
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Time

Until now: we have essentially ignored the
issue of time

• We have assumed that our digital logic
circuits perform their computations
instantaneously

• Our digital logic circuits have been
“stateless”
– Once you present a new input, they forget

everything about previous inputs
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Time

In reality, time is an important issue:

• Even our logic gates induce a small
amount of delay (on the order of a few
nanoseconds)

• For much of what we do – we actually
want our circuits to have some form of
memory
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Timing Notation

time

X

high

low
In transition
(undetermined)
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Timing Notation

time

X

Either high or low (but well 
defined and constant)

low

In transition
(undetermined)
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NAND Latch

What does this circuit do?
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NAND Latch

Consider this initial state

Is this a stable state?

1
0

1
1

Yes!
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NAND Latch

What happens with S is set to 0?

0
0->?

1
1->?
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NAND Latch

What happens with S is set to 0?

Q becomes 1 (thus S ‘sets’ Q)

0
0->1

1
1->0
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NAND Latch

Now S is set 1 – what happens?

1
1->?

1
0->?
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NAND Latch

Q and Q’ remain the same!

1
1->1

1
0->1

So Q and Q’ retain a memory of past state!
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NAND Latch

Now set R to 0 – what happens?

1
1->?

0
0->?
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NAND Latch

Now set R to 0 – what happens?

The state flips back (Q is ‘reset’)

1
1->0

0
0->1
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NAND Latch

Finally: set R to 1 – what happens?

1
0->?

1
1->?
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NAND Latch

Finally: set R to 1 – what happens?

Q and Q’ do not change state

1
0->0

1
1->1
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Timing Diagram Representation

S

R

Q

Q’

?
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Timing Diagram Representation

S

R

Q

Q’

Note small delay in response in Q and Q’
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Timing Diagram Representation

S

R

Q

Q’

When S returns to high –
both Q and Q’ remain in 
the same state
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Timing Diagram Representation

S

R

Q

Q’

?
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Timing Diagram Representation

S

R

Q

Q’

Q and Q’ flip
state
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Timing Diagram Representation

S

R

Q

Q’

How about this case?
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Timing Diagram Representation

S

R

Q

Q’

No change in Q and Q’



Andrew H. Fagg: Embedded
Real-Time Systems: Sequential

Logic

23

Latches

Provide us with a simple form of memory

• State of the circuit depends not only on
the current inputs, but also on the recent
history of the inputs
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Latches

But: our circuit responds any time the inputs
are low

• We want to limit the state change to a very
narrow time period

• This will allow us to synchronize the state
change of several devices

->  Flip Flops
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Flip Flops

• Add one more input to the circuit: a “clock”
signal

• We will only allow the state of the output to
change in response to S & R when the
clock transitions from 1 to 0
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Flip Flops

• Add one more input to the circuit: a “clock”
signal

• We will only allow the state of the output to
change in response to S & R when the
clock transitions from 1 to 0
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Flip Flops
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R-S Flip Flop

Initial state

0

0

0

0

1

1

1

1

1

0

0

1

Note that the meaning of S & R has been inverted
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R-S Flip Flop

Clock goes high

0

0

0->1

0

1

1

1

1->0

1

0->1

0

1

No change in Q and Q’
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R-S Flip Flop

Clock goes low again

0

0

1->0

0

1

1

1

0->1

1

1->0

0

1

Still no change in Q and Q’
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R-S Flip Flop

S goes high

0->1

0

0

0

1

1

1

1

1

0

0

1

Nothing in the circuit changes
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R-S Flip Flop

Now: clock goes high

1

0

0->1

0->1

1->0

1->0

1

1->0

1

0->1

0

1

The state of the first latch changes
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R-S Flip Flop

Now: clock goes low

1

0

1->0

1

0

0->1

1

0->1

1->0

1

0->1

1->0

The state of the second latch changes!
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R-S Flip Flop
Timing Diagram Representation

S

R

Q

Q’

C Q and Q’ flip state
only after the
clock goes low
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R-S Flip Flop

The timing of the drop of S is not critical

• But it must do so before the clock goes
low
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R-S Flip Flop
Timing Diagram Representation

S

R

Q

Q’

C The circuit will
require a
specified amount
of “setup time”
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R-S Flip Flop Summary

Behaves like an R-S latch – but:

• The flip flop will only “pay attention” to the
R-S inputs on the falling edge of the clock
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Next Time

• D flip flops

• Binary number encoding

• Shift registers

• Counters
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Last Time

• Project 1 specification

• Sequential logic:
– R-S Latch

– R-S Flip flop
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Today

Sequential circuits continued

• Clocked R-S latch

• D Flip flop

• Binary coding

• Shift registers

• Counters
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Administrivia

• Mark back?

• Homework 1 is out:
– Due Feb 17th @ 5:00

• Project 1:
– Worth 8% of your final grade

– The group that demonstrates successfully first
will receive an extra 0.5% of extra credit
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Latch vs Flip flop

• Latch implements a simple form of
memory

• A flip flop adds:
– Precise control over when the state of the

memory changes
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Clocked R-S Latch

Allows some control over when the latch
changes state
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Clocked R-S Latch

State can only change when the clock is
high

Note that R or S must be high to cause a
reset or a set
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Clocked R-S Latch

S

R

Q

Q’

C Q and Q’ flip state
when the clock is
high
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Clocked R-S Latch

How is this different than our R-S flip flop?
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Clocked R-S Latch

S

R

Q

Q’

C

What do Q and Q’
do?
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Clocked R-S Latch

S

R

Q

Q’

C

Clock triggers flip
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Clocked R-S Latch

S

R

Q

Q’

C

R triggers reset
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Clocked R-S Latch

S

R

Q

Q’

C

S triggers set
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Clocked R-S Latch

S

R

Q

Q’

C
Clock goes low:
No further
changes in state
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R-S Latch vs Flip Flop

What would the R-S flip flop do?
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R-S Flip Flop

S

R

Q

Q’

C

What happens to
Q and Q’?
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R-S Flip Flop

S

R

Q

Q’

C

State change only
on downward
edge of the clock
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R-S Flip Flop

State change happens at a very precise time
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R-S Flip Flop

State change happens at a very precise time

But:

• We must guarantee that R and S are
never high at the same time

• We would like to be able to store the
high/low state of a single line
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D-Type Flip Flop

Replace R/S with D

• In essence, R is replaced with D’
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D-Type Flip Flop

D=1 results in a ‘set’ of the latch

1

1

1

0
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D-Type Flip Flop

D=1 results in a ‘set’ of the latch

1

1

1

0

0

1

0

1

1
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D-Type Flip Flop

Clock transitions from high to low

1->0

1

1

0->1

0

1

0->1

1->0

1
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D-Type Flip Flop

Clock transition -> ‘set’ of the slave latch

1->0

1

1

0->1

0

1

0->1

1->0

1

1

0
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D-Type Flip Flop

D=0 results in a ‘reset’ of the latch

1

0

0

1
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D-Type Flip Flop

D=0 results in a ‘reset’ of the latch

1

0

0

1

1

0

0

1

1
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D-Type Flip Flop

Clock transitions from high to low results in a
‘reset’ of the slave latch

1->0

0

0->1

1

1

0

0->1

1

1->0
1

0
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D Flip Flop

D

Q

Q’

C

What happens to
Q and Q’?
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D Flip Flop

D

Q

Q’

C

What happens to
Q and Q’?
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D Flip Flop

D

Q

Q’

C

What happens to
Q and Q’?
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D Flip Flop

D

Q

Q’

C

No change
in state
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D Flip Flops

Clock



Andrew H. Fagg: Embedded
Real-Time Systems: Sequential

Logic

70

An Application of D Flip Flops

What does this circuit do?
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Shift Register

On each clock transition from high to low:

• X0 takes on the current value of D

• X1 <- X0

• X2 <- X1
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Another D Flip Flop Circuit

How does this circuit behave?
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Frequency Divider

How does this circuit behave?

CLK

Q
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Frequency Divider

Q flips state on every downward edge of the
clock

CLK

Q
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A Bit About Binary Encoding

If a boolean variable
can only encode two
different values, how
do we represent a
larger number of
values?

www.thinkgeek.com
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Binary Encoding

How do we represent a larger number of
values?

• As with our decimal number system: we
concatenate binary digits (or “bits”) into
strings
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Binary Encoding

• The first (rightmost) bit is the 1’s digit

• The second bit is the 2’s digit

• The ith bit is the 2i-1 ’s digit
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Binary Encoding

How do we
convert from
binary to
decimal in
general?

7111

6011

5101

4001

3110

2010

1100

0000

decimalB0B1B2
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Last Time

Sequential Logic

• D Flip Flops

• Shift registers

• Ripple Counters

Binary number system
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Today

• A little more on number systems

• Arithmetic operators

• Representing negative numbers

• Multiplication with shift registers

• Arithmetic logic units
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Administrivia

• Homework 1 due in 1 week

• Project 1:
– One robot is now up and stable

– A complete set of power supplies will be
available today
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Binary to Decimal Conversion

K++++= 3
3

2
2

1
10 2*2*2* BBBBvalue

∑
−

=

=
1

0

2*
N

i

i
iBvalue

How do we convert from decimal
to binary?
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Decimal to Binary Conversion

}

2

1

22

{

)0(

0:

1

i

i

ii

i

valuevalue

B

valuesuchthatiFind

valuewhile

Bi

−←

←

≥>

≠

←∀

+
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Binary Counter

How would we build a
circuit that counts the
number of clock ticks
that have gone by?

111

011

101

001

110

010

100

000

B0B1B2
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Binary Counter

How would we build a
circuit that counts the
number of clock ticks
that have gone by?

Insight:
• B1 changes state at half

the frequency that B0
does

• B2 changes state at half
the frequency of B1

111

011

101

001

110

010

100

000

B0B1B2
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Ripple Counter

The carry “ripples” down the chain …
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J-K Flip Flops

Behave similarly to R-S flip flops, but:

• Deal properly with the case where both R
and S inputs are 1
– The R-S flip flop will arbitrarily choose one of

the possible output states

• The master latch (on the input side) can
only change state once while the clock is
high
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T Flip Flops

• J-K flip flop with R and S tied high

• Every downward clock edge causes the
flip flop to change state

• This is just like our D flip flop with D
connected to Q’
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Next Time

Binary Arithmetic:
• Addition
• Representing negative numbers &

subtraction
• A little bit on multiplication
Other number systems
• Octal
• Hexadecimal


