Project 4: Motor Control
Project 4: Motor Driver Control

Four ducted fans for our hovercrafts:

• One lift fan: unidirectional control
• Three lateral fans: bidirectional control
Component 1: Circuit

- H-bridge to power
- H-bridge to fans

- H-bridge to Teensy
 - For each fan: PWM magnitude and 2 direction control signals
 - Lift fan: hard-wire direction to push air into the lower chamber
 - Teensy power and ground

Be careful with direct battery power!
Component 2: Supporting Types/Implementation

Top of program:
// Promise that we will implement this function later
void fsm_step();

// Create a task that will be executed once per 50 ms
PeriodicAction fsm_task(50, fsm_step);

// Gains to be used for reverse thrust
const float FAN_GAIN[] = {1.0, 1.0, 1.0};

Loop:
void loop()
{
 // Check to see if it is time to execute the fsm_task
 fsm_task.step();
}

Andrew H. Fagg: Embedded Real-Time Systems: Project 4
Component 3: Interface Functions

```c
int16_t clip(float value, float min_value,
             float max_value)

void set_lift_fan_magnitude(float magnitude)

void set_lateral_fan_magnitudes(float magnitude[3])
```
Component 4: Finite State Machine

fsm_step() will implement the following behavior:

Depending on switch state:
• Central fan: Ramp up, then down

• Lateral fans:
 • Ramp left up, then down,
 • Ramp right up, then down
 • Ramp back up, then down
Coding

- `fsm_step()`:
 - Called once every 50ms
 - Does not include for, while or sleep. Instead, rely on the fact that the function will be called regularly
- Make sure that each function that you implement does exactly what the specification says & no more
- Stick to the documentation specification
New Hardware for Today

• Dual H-Bridge modules

Be careful with the battery power! (go slow)