
This project is funded in part by the National Science Foundation Award 0954310 Page 1 
 

AutoClust: Autonomous Database Partitioning using Data Mining for 

Relations with One-to-One and One-to-Many Relationships 

 

Technical Report 
 

Le Gruenwald, Sylvain Guinepain, Zhenbo Xing 

School of Computer Science 

University of Oklahoma 

 

July 2010 

 

 

1. INTRODUCTION 

 

Databases/files in many applications, such as those that process large volumes of sales 

transactions, medical records and scientific data, can be very large. The usefulness of 

these databases/files highly depends on how quickly data can be retrieved. Clever data 

organization and access is one of the best ways to improve retrieval speed. By improving 

the data storage, we can reduce the number of disk I/Os and thereby reduce the query 

response time. In this proposal we combine database/file clustering and parallelism to 

reduce the cost of I/Os and improve system throughput.  We propose an automatic and 

dynamic database/file clustering algorithm, AutoClust, that uses data mining to produce 

clusters/partitions containing data frequently accessed together.  Clusters consist of 

smaller records, therefore, fewer pages from secondary memory are accessed to process 

queries that access only some attributes, instead of the entire record [15]. This leads to 

better query performance.  

 

AutoClust is an automated and dynamic clustering technique. It is well documented 

that with the ever-growing size and number of databases to monitor, human attention has 

become a precious resource [5]. In response to this concern, the computing world is 

relying more and more on automated self-managing systems capable of making 

intelligent decision on their own. The area of autonomic computing has been getting a lot 

of attention [2, 19, 6, 20]. For AutoClust to be useful it should be fully automated, which 

implies that no human intervention is needed during the clustering process.  To do this, 

the algorithm generates attribute clusters automatically based on closed item sets [18] 

mined from the attributes sets found in the queries running against the database/file.  The 

algorithm is capable of re-clustering the database/file in order to continue achieving good 

system performance despite changes in the data and/or query sets. 

 

In this technical report, we first present Autoclust with one-to-one relationships among 

relations and then extend it to include one-to-many relationships among relations.  We 

then present the experimental results comparing AutoClust with the case of no clustering 

using the TPCH [21] benchmark. 

 

 



This project is funded in part by the National Science Foundation Award 0954310 Page 2 
 

2. RELATED WORK 

 

The clustering problem is a very difficult problem and the number of solutions is equal 

to the Bell number [5] that follows the following recurrence relation:
k

n
bb

n

k

kn

0

1 , 

where n is the total number of attributes we wish to cluster.   The first well-known 

attribute clustering technique is credited to [14] with his Bond Energy Algorithm (BEA). 

The purpose of the BEA is to identify and display natural variable groups and clusters 

that occur in complex data arrays by permuting the rows and columns so as to push the 

numerically larger array elements together. The resulting matrix is in block diagonal form. 

It is hard however to determine how many clusters there are and what attributes they 

contain. The interpretation is subjective and therefore requires human input and cannot be 

considered reliable. 

 

Navathe’s Vertical Partitioning (NVP) [15] added a second phase to the BEA 

algorithm in an effort to reduce the subjectivity of the final interpretation. In the phase, 

the author performs the BEA algorithm against an affinity matrix containing all pairs of 

attributes in the database. The BEA is then used to rearrange the rows and columns of the 

matrix such that the value of the global affinity function is maximized. The rearranged 

matrix is called the clustered affinity (CA) matrix, which then becomes an input to the 

second phase of the technique called the Binary Vertical Partitioning (BVP) algorithm. 

BVP recursively partitions the CA matrix into two halves in order to minimize the 

number of transactions that access attributes in both the halves.  This technique has two 

drawbacks: 1) the objective function to maximize in phase 2 is subjective and alternative 

functions could produce different results, and 2) the solution only contains two clusters of 

attributes. 

 

Data mining clustering is another tool to group data items together by finding 

similarities in the data itself. To accomplish this, data mining clustering algorithms use a 

similarity measure or distance function to determine the distance/similarity between any 

two data items [8]. The objective is to create groups or clusters where the elements within 

each group are alike and elements between groups are dissimilar. Elements in the same 

cluster are alike and elements in different clusters are not alike.  

 

The three techniques described so far suffer the same problem. These techniques group 

data items based on similarities found in the actual data, not based on attribute usage by 

queries. Thus two data items could be stored together because they were found to be 

similar but rarely be accessed together. The problem with such an approach is that it only 

helps with record clustering and does not help reducing the number of I/Os for queries 

accessing only few attributes of a relation.  Realizing that the next evolution in clustering 

algorithm was transaction-based clustering. 

 

A transaction-based vertical partitioning technique, the Optimal Binary Partitioning 

algorithm (OBP), is proposed in [7] where the attributes of a relation are partitioned 

according to a set of transactions. This concept derives from the fact that transactions 

carry more semantic meaning than attributes.  The technique creates clusters by splitting 



This project is funded in part by the National Science Foundation Award 0954310 Page 3 
 

up the set of attributes recursively. Each cluster of attributes is separated into two groups 

with each query: the attributes that are part of the query and those that are not. At each 

sub level of the tree, a new query is used to split the clusters further. In the end the 

algorithm produces a tree whose leaves contain the split up clusters of attributes. A cost 

function is then applied to determine the optimal binary partitioning while merging 

adjacent leaves of the tree.  The disadvantages of this technique are that it may have to 

examine a large number of possible partitions in order to find the optimal binary 

partitioning and it produces partitions that contain only two clusters. Other more recent 

clustering algorithms can cluster attributes in more than 2 clusters. This allows for better 

performance when the relations have many attributes and there are many queries. 

 

A graph theory approach to the clustering problem was proposed in [12] with a 

clustering technique based on graph connectivity. The similarity data is used to form a 

similarity graph in which vertices correspond to elements and edges connect elements 

with similarity values above some threshold. Clusters are highly connected sub-graphs, 

which are defined as subgraphs whose edge connectivity exceeds half of the number of 

vertices. This technique does not take into account query frequencies and the resulting 

solution could contain clusters that favour infrequent queries over more frequent ones. 

 

Microsoft’s data mining based solution to the automatic clustering problem was 

presented in [2, 3].  Using the attribute affinity matrix, the algorithm mines the frequent 

item sets of attributes and retains the top k ordered by confidence level. Each attribute-set 

forms a binary partition: attributes in the sets and attributes not in the set. The algorithm 

then determines which such binary partition is optimal for each individual query. The 

cost is obtained by creating two sub-tables corresponding to the two clusters and running 

the query through the query optimizer to obtain its cost. Then a merging step combines 

the resulting binary clusters two at a time and evaluates the cost of all possible merged 

partitions and selects the lowest cost cluster.  This clustering is static and, given its ties to 

other database objects such as indices, it is not possible to convert it into a dynamic 

solution.  

 

A static horizontal partitioning method introduced in Oracle 11gR1 that equi-partitions 

tables with a parent-child referential relationship between them was presented in [10].  

The partitioning key from the parent table is used without duplicating the key columns. 

This technique does not deal with attribute clustering.  In [13] the authors propose two 

techniques based on workload to segment data in a column store and replicate the 

segments on disks.  It does not deal with clustering of attributes to decide which columns 

to be placed in the same segment.  In [17] a database partitioning technique, called 

AutoPart, is proposed to perform categorical and vertical partitioning on the database; 

however it  handles neither record clustering nor re-clustering dynamically.    

 

None of the clustering algorithms reviewed above is truly autonomous. Some require 

manual and subjective interpretation of the results; some only produce two clusters of 

attributes; others use subjective parameters that result in sub-optimal solutions if their 

values are not chosen carefully. None of them is for cluster computing and none 

integrates attribute clustering with record clustering dynamically and automatically.   



This project is funded in part by the National Science Foundation Award 0954310 Page 4 
 

There has been work on data placement with data replication on cluster machines to 

improve system performance [11,1, 23].  Their main focus is to decide which replicas to 

place on which nodes and how to achieve tradeoffs between data consistency and 

application performance.  None of these works deals with automatic and dynamic 

clustering of data for efficient data placement despite changes in the system workload, 

which is the goal of our research.    

 

3. AUTOCLUST WITH ONE-TO-ONE RELATIONSHIPS AMONG RELATIONS 

 

Our objective is to create an automatic and dynamic clustering technique that is 

triggered automatically when the query response time becomes higher (worse) than a 

user-determined threshold and that rearrange the data on disk based on attribute and 

record affinity patterns discovered in the query set. Our technique belongs to the category 

of mixed partitioning, where vertical partitioning (attribute clustering) is followed by 

horizontal partitioning (record clustering). Using data mining we will first partitioned the 

database vertically by identifying attributes that should be clustered together. Then we 

will partition the different partitions/clusters horizontally by clustering records within 

each cluster based on their co-access frequencies to produce smaller clusters that better 

answer the queries considered. Our dynamic automatic clustering solution works as 

follows.  As queries are being processed, the system collects information about each 

query. When the system detects that the query response time is not as good as what the 

user expects, it will test the goodness of the record clustering in place. If no bad 

clustering is detected, then the system goes back to its original state and starts running 

queries and gathering information again. On the other hand, if a bad record clustering is 

detected, then the system tests for bad attribute clustering.  If only a bad record clustering 

is detected, the data is rearranged horizontally, i.e. a record clustering is executed. If a 

bad attribute clustering is detected, then the attribute clustering is performed followed by 

the record clustering.  In this section, we describe the attribute clustering of AutoClust 

when the relationships among relations are one-to-one. 

 

The attribute clustering part is done in four steps.  In Step 1, we build a frequency-

weighted attribute usage matrix where each cell (i, j) contains the frequency of query i 

accessing attribute j.  Table 1 shows an example of this matrix. 

 

Table 1: Frequency Weighted Attribute Usage Matrix 

 

Queries 

Attributes 

A B C D E F 

q1 10 0 10 10 0 0 

q2 20 2

0 

20 0 20 0 

q3 0 3

0 

0 0 30 0 

q4 0 4

0 

40 0 40 0 

 



This project is funded in part by the National Science Foundation Award 0954310 Page 5 
 

In Step 2, we mine the closed item sets (CIS) of attributes. A closed item set is a 

maximal item set contained in the same queries. This information tells us what attributes 

are often accessed together.  Attributes that are frequently queried together should be 

stored together. If we consider database attributes as items and queries as transactions, 

the problem of identifying attributes frequently queried together is similar to the data 

mining association rules problem of finding frequent item sets, which is described below. 

1)  Frequent Item Sets [8]: A frequent item set is an item set, which is present in a 

number of transactions greater than a support threshold, s. For example, from Table 2, we 

see that {B, C} is accessed by 60% of the queries run. Therefore the item set {B, C} has a 

support of 60%. The item set {A, C, D} has a support of 10%.  If we set the support level 

threshold at 20%, {B, C} would be a frequent item set but {A, C, D} would not be. A 

subset of the set of frequent item sets is a set of frequent closed item sets defined as 

follows. 

2)  Closed Item sets [18]: A closed item set carries more information because it is a 

maximal item set contained in the same queries. It meets the following two conditions: 

All members of the closed item set X appear in the same queries/transactions. There 

exists no item set X’ such that: 

 X’ is a proper superset of X and 

 Every transaction containing X also contains X’. 

Mathematically, the problem is described as follows [9]: 

Let D = (O, I, R) be a data mining context, O a set of transactions, I a set of items, and 

R a binary relation between transactions and items. For O  O and I  I, we define:  

 f(O) = { i  I | o O, (o,i)  R } and  

 g(I) = { o  O | i I, (o,i)  R }.  

f(O) associates with O, items common to all queries o O, and g(I) associates with I, 

transactions related to all items i  I. The operators h = fog and h’ = gof are the Galois 

closure operators [18].  

 

It suffices to consider the closed item sets as clusters of attributes and there is no need 

to consider all their subsets that are frequent item sets.  This greatly reduces the 

complexity of the clustering problem. Many algorithms for mining closed item sets exist, 

such as those in [18] and [22].  

 

In Step 3, the closed item sets mined in Step 2 are augmented and filtered in such a 

way that the original records can be reconstructed through a natural join after the 

clustering has taken place.  Every CIS that does not contain the primary key (PK) of the 

relation will be augmented with the primary key attributes. Note that if the CIS contains 

attributes from multiple relations with one-to-one relationships, then it suffices to 

augment the CIS with the primary key attribute(s) of the first relation if necessary. This 

new set is called the augmented closed item sets (ACIS). 

 

 

 

 

 



This project is funded in part by the National Science Foundation Award 0954310 Page 6 
 

Table 2: Estimated I/O Cost of Candidate Clustering Solutions 

Solution 

Estimated Individual Query 

Cost (I/O) 

Aggregate 

Cost 

q1 q2 q3 q4 

S1= {{A, F}, {A, B}, {A, C}, 

{A, D}, {A, E}} 

3.857 5.601 3.121 5.601 468.27 

S2  =  {{A, F}, {A, B}, {A, C, 

D}, {A, E}} 

2.658 5.779 3.121 5.779 466.95 

S3  = {{A, F}, {A, B, C, E}, 

{A, D}} 

4.403 3.026 3.026 3.026 316.38 

S4  = {{A, F}, {A, B, E}, {A, 

C}, {A, D}} 

3.857 4.406 1.926 4.406 360.79 

S5  = {{A, F}, {A, B, E}, {A, 

C, D}} 

2.657 4.584 1.926 4.584 359.47 

 

In Step 4, we use a branch and bound type algorithm that examines all clustering 

solutions of attributes such that a solution contains at least one cluster that is an ACIS. 

The solution with the lowest cost is the one selected as our next vertical clustering of 

attributes. The query response time is not an accurate measure of the cost of a query since 

it varies with the system load, buffering, and indexing. The cost of running a query, given 

a clustering solution, will therefore be given by the estimated I/O cost returned by a query 

optimizer like the one available in the SQL Server.  The total estimated cost of a query is 

its estimated cost multiplied by its frequency identified in Step 1.  The cost of a clustering 

solution is the sum of the estimated costs of all queries accessing the attributes in the 

clustering solution.   Table 2 shows an example of the results of Step 4 where the 

candidate clustering solution S3   is chosen as the clustering solution as its aggregate cost 

is the lowest.  

 

The proposed algorithm currently considers only CIS that contain attributes from the 

same relation/file and CIS that contain attributes from several relations/files with one-to-

one cardinality relationships among them.  In the next section we describe how we extend 

the algorithm to include one-to-many relationships among relations.   

 

4. EXTENTION OF AUTOCLUST TO INCLUDE ONE-TO-MANY 

RELATIONSHIPS AMONG RELATIONS 

 

In the current AutoClust solution, only one-to-one relationships between relations are 

considered.  For one-to-many relationships, different from one-to-one relationships, the 

attributes clustered together by AutoClust cannot be stored together in the same cluster 

on physical storage disk; in other words, the results cannot be stored in one table as the 

solution derived for one-to-one relationships.  To resolve this problem, we modify the 

four steps in AutoClust which we illustrate below through an example.   

Consider an example in which there are two relations with a one-to-many relationship 

between them, R = {A, B, C, D} and S = {E, F, A}. In the relation R, A is the primary 



This project is funded in part by the National Science Foundation Award 0954310 Page 7 
 

key, and in the relation S, E is the primary key with A is the foreign key, which 

represents the connection/relation to the relation R.  

Given the following transaction list and attribute usage matrix: 

Table 3: Transaction List and Attribute Usage Matrix for the Example 

Transactions Attributes in R Frequency Attributes in S 

A B C D E F A 

T1 1 0 1 1 10% 0 0 1 

T2 1 1 1 0 20% 1 0 1 

T3 0 1 0 0 30% 1 0 0 

T4 0 1 1 0 40% 1 1 0 

 

The four steps of the modified AutoClust are as follows: 

Step 1: Build the Frequency-Weighted Usage Matrix  

  Based on the Usage Matrix above, the Frequency-Weighted Usage Matrix can be built 

as below:  

Table 4: Frequeny-Weighted Usage Matrix for the Example 

 

Transactions 

Attributes in R (%)  

 

One 

 - 

 Many 

Attributes in S 

(%) 

A B C D E F A 

T1 10 0 10 10 0 0 10 

T2 20 20 20 0 20 0 20 

T3 0 30 0 0 30 0 0 

T4 0 40 40 0 40 0 0 

 

Step 2: Mining the Closed Item Sets 

Table 5: Closed Item Sets and Support for the Example 

Closed Item Set Support (%) 

{A, B, C}, { E} 20 

{A, C} 30 

{A, C, D} 10 

{B, C}, {E} 60 

{B}, {E} 90 

{C} 70 

 

 

 



This project is funded in part by the National Science Foundation Award 0954310 Page 8 
 

Step 3 Filtering the Closed Item Set 

Add the primary key A to all clusters which contain attributes from the relation R, and 

add the primary key E and foreign key A to all clusters which contain attributes from the 

relation S. 

Closed Item Set 

{A, B, C}, { E} 

{A, C} 

{A, C, D} 

 {B, C}, {E} 

{B}, {E} 

{C} 

  

                    

 

{A, B, C}, {E, A} 

{A, C} 

{A, C, D} 

{A, B}, {E, A} 

 

Attribute F in the relation S is not accessed by any transaction, but in the later step, it 

would be partitioned as a cluster which contains the primary key E, F, and the foreign key 

A - (E, F, A). 

Step 4: Determine the best solution for partitioning 

The algorithm retrieves the possible solutions by constructing the Execution Tree. 

Since the example here has the same results as the one in the paper [Guinepain, 2008], for 

simplicity, the algorithm and process of constructing the tree are omitted here.  

Five Solutions by constructing the execution tree:  

    S1:  { {E, A, F}, {A, B}, {A, C}, {A, D} } 

    S2: { {E, A, F}, {A, B}, {A, C, D} } 

    S3: { {E, A, F}, {A, B, C}, {E}, {A, D}  } 

    S4: { {E, A, F}, {A, B}, {E}, {A, C}, {A, D} } 

    S5: { {E, A, F}, {A, B}, {E}, {A, C, D} } 

By running the SQL Server Query Optimizer, the cost of each solution will be 

calculated, and the system will partition the database based on the one with the least cost. 



This project is funded in part by the National Science Foundation Award 0954310 Page 9 
 

5. SIMULATION EXPERIMENTS COMPARING AUTOCLUST WITH NO-

CLUSTERING   

We compared AutoClust with the case when no clustering was available using the 

TPCH benchmark [7].  Experiments showed that AutoClust performs better than no 

clustering (NoClust), which we describe in detail below.   

Experiment Environment Configuration:  

SQL Server Query Optimizer was used to simulate the process of queries; in other 

words, instead of being really executed in SQL Server, the queries are sent to Query 

Optimizer, and the query optimizer analyzes the queries and returns the results, which 

includes the I/O cost and CPU cost.  

TPCH Benchmark: 

The current simulators work with 7 tables and the range of amount of attributes in these 

tables is from 3 to 9.  

Table Name Num of Attributes Num of Records  Data Size 

CUSTOMER 8 0 0 

NATION 4 25 2,575 B 

ORDERS 9 1,500,000 143 MB 

PART 9 200,000 25 MB 

PARTSUPP 5 800,000 100 MB 

REGION 3 5 510 B 

SUPPLIER 7 10,000 1,172 B 

 

Sample Results & Analysis: 

The results below were obtained by running AutoClust and NoClust, respectively, on 

table PART with the same query set (result, I/O Cost returned by SQL Query Optimizer).  

Algorithm  I/O Cost  

AutoClust 0.496582529999999 

NoClust 1.2749768 

 

The I/O Cost returned by Optimizer is calculated by adding the total I/O operation 

costs, in short, the number represents time (second). Since the time each I/O operation 

needs is known, this number is therefore corresponding to the number of I/O operations. 

The I/O cost is computed as follows: 

    I/O Cost = 0.003125 + 0.00074074 * (N - 1)  

N is the num of I/O operations. 0.003125 is the time to finish the first I/O operation, 

and the time to finish each sequential I/O operation is 0.00074074 second. In the example 

above,  we have: 



This project is funded in part by the National Science Foundation Award 0954310 Page 10 
 

 N = ( (I/O Cost – 0.003125 ) / 0.00074074 ) + 1 

NAutoClust = 666 + 1 = 667 

NNoClust = 1717 + 1 = 1718 

For the same table, AutoClust only needs 667 I/O operations while NoClust needs 1718 

I/O operations.  In this example, AutoClust performs three times better than NoClust.   

 

6.  FUTURE RESEARCH 

For future research, we will enhance AutoClust so that it will automatically detect bad 

clustering and perform appropriate re-clustering. We distinguish two different types of 

bad clustering: bad attribute clustering and bad record clustering.  Since attribute clusters 

contain record clusters, bad record clustering is less severe a problem and it is also easier 

to fix. We can just re-cluster the records within that particular attribute cluster. On the 

other hand bad attribute clustering is a severe problem as it requires running AutoClust 

from the start, which means we need to perform attribute re-clustering and, then inside 

each newly formed attribute cluster, we need to perform record clustering. So fixing a 

bad attribute clustering is more difficult and time-consuming than fixing a bad record 

clustering. Also a bad record clustering can possibly only affect one attribute cluster in 

which case the rest of the database can remain untouched while we fix that one attribute 

cluster. 

A bad record clustering means that a query has to access data from two or more separate 

“data clusters” within the same attribute cluster when it could potentially need to access 

only one. A bad attribute clustering, on the other hand, means that a query has to access 

data from two or more separate attribute clusters and there is a good chance that within 

each attribute cluster, it might also access several “data clusters.”  So the problem is 

compounded with bad attribute clustering. 

In summary bad attribute clustering has a more dramatic effect on system performance 

degradation and is also much harder to fix.  We can conclude that since record clustering 

can be fixed by itself and can be fixed easily, bad record clustering should be the first 

thing we test when we test the system performance in the automated system.   Also note 

the following points: 1) good record clustering implies good attribute clustering; 2) good 

attribute clustering does not implies good record clustering; 3) bad record clustering does 

not imply bad attribute clustering; and 4) bad attribute clustering is likely to be 

compounded with bad record clustering.  So, one possible procedure for detecting bad 

clustering is the following: If bad record clustering (BRC) and if bad attribute clustering 

(BAC) occur, we will perform attribute clustering and then perform record clustering on 

individual resulting attribute cluster; otherwise, if we have only bad record clustering, we 



This project is funded in part by the National Science Foundation Award 0954310 Page 11 
 

will perform record clustering on the faulty clusters only.   In our research, we will 

develop solutions to detect BAC and BRC, when/how often they should be tested, what 

level of BAC/BRC is necessary in order to trigger a re-clustering, how to switch the 

clustering configuration from the old one to the new one and how to deal with query 

execution in the process.  We will then also extend AutoClust for cluster computing.  

 

REFERENCES 

 

[1] Abawajy,  J. H.,  Placement of File Replicas in Data Grid Environments, Workshop 

on Programming Grids and Metasystems, Lecture Notes in Computer Science, 

Volume 3038, 2004. 

[2] Sanjay Agrawal, V. Narasayya, B. Yang, Integrating Vertical and Horizontal 

Partitioning into Automated Physical Database Design, SIGMOD, June 2004. 

[3] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek Narasayya, 

Manoj Syamala, Database Tuning Advisor for Microsoft SQL Server 2005: Demo, 

SIGMOD 2005, June 2005. 

[4] Mark Baker, Rajkumar Buyya, Cluster Computing at a Glance, Chapter 1, High-

Performance Cluster Computing, Architectures and Systems, Vol. 1, Prentice-Hall, 

1999. 

[5] http://mathforum.org/advanced/robertd/bell.html. Accessed 8/15/2008. 

[6] Surajit Chaudhuri and Vivek Narasayya, Self-Tuning Database Systems: A Decade of 

Progress, International Conference Very Large Databases, September 2007. 

[7] Wesley W. Chu and I. Ieong, A Transaction-Based Approach to Vertical 

Partitioning for Relational Database Systems, IEEE Transactions on Software 

Engineering, Vol. 19, No. 8, August 1993. 

[8] Margaret H. Dunham, Data Mining: Introduction and Advanced Topics, Prentice 

Hall, 2003. 

[9] Nicolas Durand and B. Cremilleux, Extraction of a Subset of Concepts from 

Frequent Closed Itemset Lattice: A New Approach of Meaningful Clusters Discovery, 

International Workshop on Advances in Formal Concept Analysis for Knowledge 

Discovery in Databases, July 2002. 

[10] Eadon, G., Chong E., Shankar, S., Raghavan, A., Srinivasan, J., and Das, S., 

Supporting table partitioning by reference in Oracle, ACM SIGMOD international 

conference on Management of data, 2008. 

[11] Stéphane Gançarski, Hubert Naacke, Esther Pacitti and Patrick Valduriez, Parallel 

Processing with Autonomous Databases in a Cluster System, On the Move to 

Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE, Lecture Notes in 

Computer Science, Volume 2519, 2002. 

[12] Erez Hartux, and Ron Shamir, A Clustering Algorithm Based on Graph Connectivity, 

Information Processing Letters, Vol. 76, No. 4-6, 2000. 

[13] Milena Ivanova, Martin Kernsten, and Niels Nes, Self-organizing strategies for a 

column-store database, ACM  International conference on Extending DataBase 

Technology, 2008. 

http://mathforum.org/advanced/robertd/bell.html


This project is funded in part by the National Science Foundation Award 0954310 Page 12 
 

[14] McCormick, W. T. Schweitzer P. J., and White T. W., Problem decomposition and 

data reorganization by a clustering technique, Operation Research, Vol. 20, No.5, 

September 1972. 

[15] Shamkant Navathe, S. Ceri, G. Widerhold, and J. Dou, Vertical Partitioning 

Algorithms for Database Design, ACM Transactions on Database Systems, Vol. 9, 

No. 4, December 1984. 

[16] Stratos Papadomanolakis and Anastasia Ailamaki, AutoPart: Automating Schema 

Design for Large Scientific Databases Using Data Partitioning, International 

Conference on Scientific and Statistical Database Management, June 2004.  

[17] Stratos Papadomanolakis, Debabrata Dash, Anastasia Ailamaki, Efficient Use of the 

Query Optimizer for Automated Physical Design, International Conference Very 

Large Databases, September 2007. 

[18] Nicolas Pasquier, Y. Bastidem,  R. Taouil, and L. Lakhal, Efficient Mining of 

Association Rules Using Closed Itemset Lattices, Information Systems, Vol. 24, No. 

1, 1999. 

[19] International Workshop on Self-Adaptive and Autonomic Computing Systems, 

DEXA 2006. 

[20] 3
rd

 International Workshop on Self-Managing Database Systems, ICDE 2008. 

[21] http://www.tpc.org. 

[22] Mohammed J. Zaki and C. Hsiao, CHARM: An Efficient Algorithm for Closed 

Itemset Mining, SIAM International Conference on Data Mining, April 2002. 

[23] Yulai Yuan, Yongwei Wu, Guangwen Yang, and Feng Yu, Dynamic Data 

Replication based on Local Optimization Principle in Data Grid,  International 

Conference on Grid and Cooperative Computing, 2007. 

  

 

 

 

http://www.tpc.org/

