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Abstract 
One of the most important metrics in measuring the performance 
of a database system is query response time, which is composed 
of I/O time and CPU time. I/O time is decided by the amount of 
data read/write from/to disks and how the data is located on 
disks. CPU time is decided by how the database system 
performs the query operations. So if we want to reduce the query 
response time we can reduce either I/O time or CPU time, or 
both of them.  We know retrieving data from disks is much 
slower than retrieving data from main memory. Hence, one of 
the common ways to reduce I/O times is clustering data on disks 
so that queries will access only relevant data. This paper 
introduces an efficient algorithm, called AutoClust, for  
automatic database attribute clustering (or also called automatic 
database vertical partitioning) for single computers as well as 
cluster computers.  It is based on closed item sets mined from 
queries and their attributes using association rule mining.  The 
paper then presents experimental results comparing the 
performance of AutoClust with that of a baseline algorithm on 
both single computers and cluster computers using the TPC-H 
benchmark running on  major commercial database systems. 
The experiments show that AutoClust has better query costs for 
both types of computers. 
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1. Introduction 
In a digital age, many business or scientific decisions cannot be 
made without an analysis on large amounts of data. Therefore 
databases are widely used in many application areas. A database 
application’s performance highly depends on how quickly data 
could be retrieved from the database. When the database size is 
small, the time spent on reading/writing data from/to disk and 
operating (selecting, merging, filtering, etc.) data is usually 
small, and thus its impacts on query response time may not be 
very critical. However, today with database size getting bigger 
and bigger like those in bio-science, finance and medicine, if the 

database is not organized properly, such time overhead could 
yield unacceptable query response time.   

Vertical partitioning and horizontal partitioning are two major 
techniques which can considerably improve query response time 
when physical database design is performed [2]. Today, most 
database systems support horizontal partitioning [24]. Three 
common horizontal partitioning approaches  that are used by 
most database developers are range partitioning, list partitioning 
and hash partitioning [2]; but it is rare to find a database system 
that has a sophisticated algorithm to support vertical 
partitioning. 

As query response time is composed of I/O time and CPU time, 
reduction on either of them can lead to an improvement of the 
database application’s performance. Without partitioning 
databases, when the database system processes a query that 
accesses some attributes in a relation, the whole relation, rather 
than just those attributes, will be read from secondary memory. 
If we reorganize database tables in such a way that each table is 
partitioned vertically into sub-tables and the database system, 
when executing the query, will access only the relevant sub-
table that contains the attributes in the query, then fewer pages 
from secondary memory will be accessed to process the query 
[17], which reduces I/O time, and thus can lead to a better query 
response time.  

Cluster computers[5] can be used to deploy database to improve 
performance [23].  As query sets may change, optimal physical 
database design and database self tuning attract more and more 
attention [9][6][12]. Vertical partitioning (or also called attribute 
clustering) on tables is one way that can help designers achieve 
the performance goal.   A clever algorithm is needed to 
automatically provide different partitioning solutions which can 
be implemented on different nodes of the cluster computers so 
that queries can always be processed on the best nodes. 

In this paper we introduce a technique called AutoClust which 
combines data mining and parallelism together to automatically 
perform attribute clustering in order to reduce the cost of I/Os on 
cluster computers when processing queries. A preliminary 
version of AutoClust without any performance studies was 
presented in [10].The algorithm uses query frequencies and 
attributes accessed by queries to generate attribute clusters 
automatically based on closed item sets [22] mined from the 
attributes found in the queries processed by the database system. 
The best attribute clustering solution is the one that has the best 
cost estimated by the query optimizer.  The most important part 
of this algorithm is that it can be implemented for distributed 
databases located on a cluster computer where two or more 
computers are linked together by a network and work together as 
a single integrated system. AutoClust can generate more than 
one solution for a table based on a query set. A table may have 
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different optimal attribute clustering solutions according to 
different queries and those different optimal solutions can be 
implemented on different nodes of a cluster computer so that a 
query can always be processed on the node with the best 
solution.  

The remainder of this paper is organized as follows. In Section 
2, we review the related work on database attributes clustering. 
In Section 3 we introduce the AutoClust algorithm for a single 
computer and then extend it to a cluster computer. In Section 4, 
we present the experimental comparison results between 
AutoClust and a baseline algorithm for both single computers 
and cluster computers using the TPC-H benchmark.  Finally we 
give our conclusions and future work in Section 5. 

2. Related Work 
As discussed in [10], how to minimize disk I/Os is an important 
topic since the early 1970s. From that time on, algorithms have 
been developed to reduce I/Os by clustering huge complex data 
arrays in order to reduce pages reading from secondary memory 
[8].  Those algorithms can be categorized into three major 
categories: attributes affinity based, transaction based, and graph 
theory based vertical partitioning.  In attribute affinity based 
vertical partitioning, a two dimensional matrix, which contains 
the information of what attribute appears in what query, is built 
according to a query set and the partitioning algorithm is based 
on this matrix.  In transaction based vertical partitioning,  
transactions are considered to have more semantic meanings 
than attributes and a binary partitioning  method is used based 
on a selected set of important transactions. In graph theory based 
vertical partitioning,  a complete graph is used to replace the 
attributes affinity matrix. Each meaningful partition fragment is 
generated when the algorithm detects a certain cycle in the 
graph.  Some algorithms combine two different groups together.    

The first well-known attribute clustering algorithm was 
introduced in 1972 with the name of Bond Energy Algorithm 
(BEA) [16]. This algorithm is an attributes affinity based 
algorithm. It uses a two dimension array to represent the 
relationship between two different kinds of variables, row 
variable and column variable. Each column represents one kind 
of variable and each row represents the other kind of variable. 
Each element in the array is represented by a numerical value, 
which usually is an integer, to show the relationship between  
the row and column variables corresponding to this element. 
This algorithm permutates rows and columns of the array in 
order to group elements with similar values together.  At the end 
of the algorithm, elements with similar values  are located in the 
same block in the array and each block can be considered as a 
cluster. When doing permutation on the array, the algorithm 
needs user’s subjective judgment to tell the similarity of 
elements; so this algorithm is hard to implement without 
human’s interpretation. Sometimes blocks may have overlaps 
and some elements do not belong to any block. It means the 
clustering result is not always as good as what people expect. 

Later after the development of BEA, another new important 
algorithm emerged, which was called Navathe’s Vertical 
Partitioning (NVP) [17]. NVP is also an affinity matrix based 
algorithm. This was the first time that a clustering algorithm 
considers the frequency of queries and reflects the frequency in 
the attributes affinity matrix on which clustering was performed. 
NVP is an extension and improvement of BEA. This algorithm 
repeatedly does binary vertical partitioning (BVP) on a  larger 
fragment, which is gotten from the previous BVP, to form two 

fragments: one larger fragment and one smaller fragment until 
no more fragment can be partitioned. An evaluation function, 
which replaces the human’s subjective judgment, is  used for 
automatic fragments selection. NVP even considers the situation 
when it is implemented on a distributed database on multiple 
sites. However O(2n) time complexity where n is the number of  
times binary partitioning (which is proportional to the number of 
queries) is repeated makes this algorithm expensive. If fragment 
overlapping is allowed, the time complexity will be even bigger 
than that. So this algorithm is only suitable for those tables with 
a small number of attributes.  

Because of the poor time complexity of NVP, a new transaction 
based vertical partitioning technique, called Optimal Binary 
Partitioning algorithm (OBP), was proposed [26]. This 
algorithm constructs a binary search tree using the branch and 
bound method [11]. Each node of the tree represents a 
transaction. The left branch of a node represents those attributes 
being queried by the transaction that are included in a reasonable 
cut (if a binary cut that partitions the attributes into two sets in 
which at least one of them is a contained fragment which is the 
union of a set of attributes that the transaction  accesses then this 
binary cut is a reasonable cut). The right branch of a node 
represents the remaining attributes. If all attributes of an 
unassigned transaction are contained in the fragment of the 
current node, then this transaction needs not be considered as the 
child of the current node. This algorithm focuses on a set of 
important transactions rather than attributes themselves. It does 
reduce time considerably compared to NVP but the run time still 
grows exponentially when the number of transactions grows. So 
it is not an ideal technique for heavy transaction systems.  

Some algorithms use a graph search technique when doing data 
clustering. [18] is one of the examples. It is a graph theory based 
clustering technique. The attributes that are usually queried 
together are used to form a similarity graph.  Vertices of the 
graph are elements and edges connect elements that have 
similarity values higher than a predefined threshold. Clusters are 
the sub-graphs with edge connectivity containing more than half 
of the number of vertices. When this technique is implemented 
for database vertical partitioning, a vertex represents an attribute 
and an edge represents how often the two attributes connected 
by this edge will appear together in the same transaction. Then 
the algorithm will traverse the graph and divide the graph into 
several sub graphs, each of which represents a cluster. This 
technique considers frequent transactions and infrequent 
transactions to be the same and this will lead to an inefficient 
partitioning result.  This is because attributes that are usually 
accessed together in infrequent transactions but are not accessed 
together in frequent transactions may be put in the same 
fragment if all transactions are considered to be the same.  
Along with the increase of processor’s speed and the 
sophistication of software, database systems become cleverer 
and more powerful than ever before. Researchers then realized  
that a database system itself can give a lot of help on physical 
database design to developers. A new idea of using query 
optimizer of a database system for automated physical design 
was proposed in [21]. The author introduced a cost estimation 
technique, which uses the query optimizer of a database system 
for physical database design.  

In [1], a vertical partitioning algorithm that uses the idea of 
performing clustering based on an attributes affinity matrix from 
[17] was proposed. This algorithm starts with a vertex V that 
satisfies the least degree of reflexivity and then finds a vertex 



with the max degree of symmetry among V’s neighbors. Once 
such a neighbor is found, both V and its neighbor are put in a 
subset. The neighbor would become the new V. The process 
would continue to search neighbors of the most recent V 
recursively until a cycle is formed or no vertex is left. After that, 
the fragments will be refined using a hit ratio function. The 
disadvantage of this technique is similar to  the disadvantage in 
[18]. Infrequent queries are treated the same as frequent queries.  

A dynamic vertical partitioning of distributed systems, called 
DYVEP, was proposed in [24]. DYVEP monitors queries in 
order to accumulate relevant statistics for the vertical 
partitioning process.  It analyzes the statistics in order to 
determine if a new partitioning is necessary; if yes, it triggers a 
vertical partitioning technique (VPT) to generate a new 
partitioning solution.  The VPT could be any existing VPT that 
can make use of the available statistics. The algorithm then 
check to see if the new partitioning solution is better that the one 
in place; if  yes,  then the system reorganizes the database 
according to the new partitioning solution. This algorithm 
depends heavily on the existing VPT used and the set of rules 
that it develops to decide when to trigger the VPT.  The 
algorithm does not address how it would take advantage of 
distributed databases that have partial or full replication so that 
queries can be directed to nodes that yield the best costs to 
execute them.  

Though there are many database vertical partitioning algorithms, 
the efficient execution of ad-hoc heavy-weight On-Line 
Analytical Processing (OLAP) queries is still an open problem. 
Today cluster computers are widely used for solving such a  
problem. That is why database clustering has gained much 
interest for various database applications [4]. In the meanwhile, 
some partitioning algorithms have been developed for 
distributed databases on cluster computers (e.g. [7] and [1]). 
Some of them are  table level algorithms (e.g. [1]) and some of 
them are schema level algorithms (e.g. [7]). 

The key idea of schema level partitioning is that for a large 
number of database schemas and applications, transactions only 
access a small number of related rows which can be potentially 
spread across a number of tables. A recent typical schema level 
algorithm is ElasTraS[7], which takes the root table of a tree 
structure schema as the primary partitioning table and other 
nodes of the tree as the secondary partitioning table. The 
primary partitioning relation is partitioned independent of the 
other tables using its primary key. Because the primary table’s 
key is part of the keys of all the secondary tables, the secondary 
partitioning tables are partitioned based on the primary table’s 
partition key. Then all partitions will be spread across several 
Owning Transaction Managers, which own one or more 
partitions and provide transactional guarantees on them. 
Analyzing a schema is much more difficult than analyzing a 
table and this algorithm is generally configured for static 
partitioning purposes. 

Table level distributed database partitioning on cluster 
computers is easier than schema level partitioning since all 
single node partitioning algorithms, like those we discussed 
earlier ([16][17][26][18][1][24]), can be deployed on multiple 
nodes; however, their disadvantages still exist on each node. 
Researchers have recognized that attributes vertical partitioning 
for distributed database on cluster computers needs an algorithm 
which can generate multiple solutions at a time so that different 
solutions can be deployed on different nodes for appropriate 

queries. This means that for a particular query it can always be 
directed to the node with the best solution for processing. In 
[10], the preliminary work for such an algorithm was described.  
In this paper, we provide details on the algorithm and its 
performance results.  

A lot of evaluation work has been done on evaluating the 
performance of  distributed databases on cluster computers. The 
results show that distributed databases can greatly improve the 
performance and satisfy business requirements [23]. Because of 
this, distributed databases have become widely used and 
important for many applications, which call for more research to 
find ways to improve their physical database design. Some 
researchers have  proposed schema level tuning [7],  table level 
horizontal partitioning [15], and  table level vertical partitioning 
[17][26][18][1][24]. However,  as we have discussed in the 
previous paragraphs, schema level partitioning is generally for 
static purposes and  all table level partitioning algorithms we 
have reviewed have different weaknesses. Researchers are still 
looking for a better vertical partitioning algorithm which can be 
used together with a horizontal partitioning algorithm. In the 
next sections we present AutoClust,  an  automatic attribute 
clustering algorithm for both single computers and cluster 
computers, and performance evaluation comparing it with a 
baseline algorithm.  A preliminary version of the algorithm 
without performance evaluation was presented earlier in [10].  In 
this paper, we further detail the extension version for cluster 
computers and provide performance studies for both single 
computers and cluster computers.  

3. AutoClust 
3.1. AutoClust on a Single Computer 
AutoClust for a single computer was first introduced in [10]. 
However, In that paper, as AutoClust was still in its early stage 
of research, no performance studies were conducted.   In this 
section, we summarize the key ideas of AutoClust and present 
experimental studies comparing the performance of AutoClust 
with a baseline case where the database table is in its original 
form without any partitioning. The AutoClust algorithm can be 
divided into five steps. In Step 1, an attributes usage matrix is 
built based on a query set showing which attributes are accessed 
by which queries. In Step 2,  the closed item sets (CIS) [22] of 
attributes are mined in order to identify which attributes are  
accessed frequently by the same query. An item set is called 
closed if it has no superset having the same support which is the 
fraction of transactions in a data set where the item set appears 
as a subset [22]. For such attribute sets we need to keep them 
together as an independent cluster as much as possible. In Step 
3, augmentations to add the primary key of the original table to 
each existing closed item set are done to form the augment 
closed item set (ACIS) which is  a  combination of CIS and the 
primary key. Then we will remove duplicate ACIS. In Step 4 an 
execution tree is generated where each leaf represents a 
candidate attribute clustering solution. Finally, in Step 5,  the 
solutions are submitted to its query optimizer of the database 
system that will process the queries for cost estimation and the 
solution with the best cost estimation is chosen  as the final 
solution.  The cost we mentioned here is based on a special unit 
of workload used by the query optimizer to estimate how much 
work needs to be done in order to process the query. This query 
cost includes I/O cost and operator (or CPU) cost. We use “cost” 
to represent the total of the two types of costs in our examples 
and experimental results unless we  specify the individual type 
of cost specifically. 



Figure 1. Execution tree without partitioning 

 

 

Figure 2. Execution tree with sub-trees (branches) partitioning 

 

The execution plan generated by the query optimizer for a query 
is usually a tree structure. In a cost based optimization (CBO) 
system, one or more mechanism for returning data will be given 
for a query. This mechanism is represented either in a graphic 
mode or a textual mode. The system will choose the mechanism 
with the least cost as the final plan used to execute the query 
[19] [3]. Data access for each table can be regarded as a portion 
of the whole execution tree. We can partition each table to 
reduce the cost for each sub-tree so that we reduce the total cost 
for the entire execution tree. For instance, an execution tree in 
SQL Server (Figure 1) can be changed to a larger execution tree 
(Figure 2) when we do partition on its branches. Once we 
compare the cost table 1 and cost table 2 we can see that the 
total cost decreases.  

Below we provide the key ideas of the five steps of AutoClust 
for a single computer.  More details can be found in  [10]. 

Table 1. Estimate cost of Figure 1 

Circle 
No. 

Operation 
Est. 
Cost 

Circle 1 Index scan on ORDERS table 18.04 

Circle 2 Index scan on LINEITEM table 83.86 

Circle 3 Merge join 16.23 

 

 

Table 2. Estimate cost of Figure 2 

Circle 
No. 

Operation 
Est. 
Cost 

Circle 1 
Get data from LINETEM_1 and 

LINEITEM_2 tables and then join 
them together 

75.8 

Circle 2 Get data from ORDERS_2 table 4.95 

Circle 3 Merge join 16.23 

 
Step 1: Build the Frequency-Weighted Attribute Usage 
Matrix 
A frequency-weighted usage matrix is built based on attribute 
affinity matrix [17]. Each row of the frequency-weighted 
attribute usage matrix represents what attributes are accessed by 
the corresponding query and what is the percentage the query 
takes in the whole query sets.  

Step 2: Mining the Closed Item sets 
In order to reduce I/O’s when a query accesses data, attributes in 
a database table that are queried together by the same query 



should be put in one cluster. In other words,  we need to find the 
attributes set which is the maximal attributes set contained in the 
same queries. Such attributes set is a closed item set [22].  

Step 3: Filtering the Closed Item Sets 
Once we have mined all the closed item sets, we augment them 
by adding the primary key of the database table to each set and 
remove the duplicate closed item sets. Then we get the 
augmented closed item sets (ACIS).   

Step 4: Generating all possible attribute clustering solutions 
based on Augmented Closed Item Sets. 
In this step an execution tree is constructed. The root of the tree 
is the item set that contains unused attributes (i.e. those that are 
not in any ACIS) and the primary key of the database table. The 
tree is extended by adding possible ACIS until all attributes are 
included in one leaf. Each leaf of the tree represents a valid 
candidate attribute clustering solution.   

Step 5: Determining the best attribute clustering solution 
Each solution generated in Step 4 is  implemented on a database 
system and the aggregate query cost is estimated using the 
database internal query optimizer. The solution with the least 
aggregate cost is chosen as  the best attribute clustering solution. 

3.2. AutoClust on Cluster Computers with 
Full Replication on Every Computer Node 
Computers linked together through a high speed network can 
work together as a single integrated system in order to improve 
performance. This system is called a cluster computing system 
[5]. When a database application is deployed on a cluster 
computing system, AutoClust can be used to perform vertical 
partitioning on the database and it can greatly decrease the query 
response time for the whole system. In [10], the preliminary 
extension of AutoClust without any performance evaluation was 
presented for two cases: 1) when the database is replicated on 
every computer node and 2) when the database is not replicated.  
Here we provide the detailed extension and performance 
evaluation for the first case.  AutoClust can generate multiple 
attribute clustering solutions at a time and a different solution 
may have a different query cost for the same query. We can 
implement different solutions on different nodes so that a query 
can always be executed on the node with the best solution for 
the query. If this node  happens to be busy then the query can be 
executed on the node with the second best solution, and so on. 
This can greatly benefit the system performance.  

Formally, to do vertical partitioning or attribute clustering for a 
database table on cluster computers that have full data 
replication, AutoClust performs the steps described below.  In 
order to make these steps more understandable we will use an 
example to explain each step. The database table and queries of 
the example come from the TPC-H benchmark [25]. The 
database table is SUPPLIER as shown in Table 3 and the ten 
queries out of the twenty-two TPC-H queries as shown in Table 
4 access this database table. The queries’ frequencies are 
generated randomly. 

 

 

 

 

Table 3. Attributes information of the database table 
SUPPLIER 

Attribute Name Database Table Data Type 
S_ACCTBAL (A) Supplier Decimal 
S_ADDRESS (B) Supplier Varchar 

S_COMMENT (C) Supplier Varchar 
S_NAME (D) Supplier Char 

S_NATIONKEY (E) Supplier Int 
S_PHONE(F) Supplier Char 

S_SUPPKEY(G) Supplier Int 

Table 4. Attribute usage matrix 

Queries Attributes Frequency 
(%) A B C D E F G 

q1 1 1 1 1 1 1 1 14.09 
q2 0 0 0 0 1 0 1 16.96 
q3 0 0 0 0 1 0 1 4.01 
q4 0 0 0 0 1 0 1 1.06 
q5 0 0 0 0 1 0 1 0.12 
q6 0 0 0 0 1 0 1 14.26 
q7 0 1 0 1 0 1 1 1.06 
q8 0 0 1 0 0 0 1 19.26 
q9 0 1 0 1 1 0 1 14.46 
q10 0 0 0 1 1 0 0 14.72 

 

Figure 3. Execution tree generated by AutoClust for a single 
computer on the SUPPLIER table 

 

Step 1: run Steps 1 – 4 of the AutoClust algorithm for a single 
computer.  This step will produce the possible attribute 
clustering solutions for one computer node. The AutoClust 
algorithm for a single computer will generate the execution tree 
to get the candidate attribute clustering solutions Si’s where each 
Si is a set of attributes. The execution tree is shown in Figure 3. 
Once the execution tree is built successfully the cost  is 
produced as shown in  Table 5. 

 

 



Table 5. Estimate costs for candidate attribute clustering solutions 

Solution Estimate Query Cost Produced by Query Optimizer Aggregate cost 
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 

S1 98 7 7 7 7 7 49 32 44 26 33 
S2 90 18 18 18 18 18 49 32 36 18 34 
S3 89 7 7 7 7 7 40 32 35 35 32 
S4 82 7 7 7 7 7 33 32 41 41 33 
S5 82 28 28 28 28 28 41 32 28 28 37 
S6 68 68 68 68 68 68 68 68 68 68 68 

Table 6. Estimate costs for possible candidate attribute clustering solutions after ranking 

Solution Estimate Query Cost Produced by the Query Optimizer Aggregate cost 

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 
S3 89 7 7 7 7 7 40 32 35 35 32 
S4 82 7 7 7 7 7 33 32 41 41 33 
S1 98 7 7 7 7 7 49 32 44 26 33 
S2 90 18 18 18 18 18 49 32 36 18 34 
S5 82 28 28 28 28 28 41 32 28 28 37 
S6 68 68 68 68 68 68 68 68 68 68 68 

 

Step 2: rank the solutions in increasing order based on their 
aggregate costs as the solutions will be chosen later in Step 4 
based on their increasing order of aggregate costs for 
implementation on computer nodes (i.e. the best solution will be 
chosen first).  Applying Step 2 on Table 5, we get  Table 6. 

Step 3: remove the solutions the costs of which are larger than 
the cost of NoPartition.  When we do attribute clustering on a 
database we can decrease the I/O cost, but the trade-off is that 
we might increase the chance of join operations, which leads to 
an increase in the operator cost. So, this removal is necessary to 
avoid the case of over-partitioning. For the SUPPLIER table in 
our example, the estimate query cost is 68 for NoPartition, and 
as we can see in  Table 6, no solution has an  aggregate cost  
larger than 68, so we do not need to remove any solution in this 
step. 

Step 4:  from the solutions resulted from Step 3, implement 
them on the computer nodes according to the increasing order of 
the solutions’ aggregate costs so that the best solution is 
implemented on the first node, the second best solution on the 
second node, and so on.  If there are still nodes remaining after  

 

all the solutions have been implemented, then repeat the loop 
again, i.e., implementing the best solution on the first remaining 
node, the second best solution on the second remaining node, 
and so on.  As an example, if our cluster computers have  three 
nodes, node 1, node 2 and node 3, then we will implement the 
first three solutions highlighted in  Table 6 on these three nodes, 
i.e., S3 on node 1, S4 on node 2, and S1 on node 3. 

Step 5: from the results generated in Step 1, construct an 
attribute clustering solution choice table as shown in  Table 7 
that shows which solution is the best, second best, and so on for 
each query.  Then from this table and from the solution 
implementation in Step 4, construct a query routing table as 
shown in Table 8 that shows which implemented solution (and 
on which node it is implemented) is the best, second best, and so 
on for each query so that when a query arrives, it will be 
directed to the node where its best solution is implemented.  If 
this node is busy, then the query will be routed to its second best 
node, and so on.  For example, when query q1 arrives, it will be 
directed to the first node of its first choice, which is node S4 in 
Table 8.  If this node is busy, then q1 will be directed to the 
implemented node of its second choice, which is node S3.

The AutoClust algorithm on cluster computers is shown in 
Figure 4. 

 

 

 

Table 7. Best attribute clustering choices for each query

Choices Queries 
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 

1st S6 S3 S3 S3 S3 S3 S4 S3 S5 S2 
2nd S4 S4 S4 S4 S4 S4 S3 S4 S3 S1 
3rd S5 S1 S1 S1 S1 S1 S5 S1 S2 S5 
4th S3 S2 S2 S2 S2 S2 S1 S2 S4 S3 
5th S2 S5 S5 S5 S5 S5 S2 S5 S1 S4 
6th S1 S6 S6 S6 S6 S6 S6 S6 S6 S6 

 

Table 8. Query routing table for a 3 nodes cluster computer 

Choices Queries 
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 

1st S4 S3 S3 S3 S3 S3 S4 S3 S3 S1 
2nd S3 S4 S4 S4 S4 S4 S3 S4 S4 S3 
3rd S1 S1 S1 S1 S1 S1 S1 S1 S1 S4 

 



Figure 4. The AutoClust algorithm on cluster computers

Run Steps 1-4 of AutoClust for one node to generate the set S of all possible clustering solutions; 
Sort solutions in S into increasing order of their aggregate query costs; 
For each solution Si in S 
  If cost of Si> cost of NoPartition 
    Then remove Si from S 
  End If 
End For; 
//Implement solutions on nodes 
Index of solution to use  i = 1 //start with the first solution in the solution set S; 
While number of remaining nodes n > 0 
  If Index of solution to use i = 0 //last solution is reached 
    Then index of solution to use i =1 //reset i to start from beginning of solution set S again 
  End If; 
  Implemented Solution IS = solution Si in S; 
  Implement IS  on node Ci 
  i = i – 1 //go to next solution in set S; 
  n = n – 1 //go to next computer node; 
End While; 
//Construct query routing  
For each query Qi 
  Sort the solutions in increasing order of their average costs to perform the query Qi and store them in column  Qi  in the  Routing  RT[Qi];   
  For each Si in RT[Qi] 
    If  Si is not implemented 
      Then delete Si from RT[Qi] 
    End If 
  End For 
End For 

 

From the procedure of how AutoClust works on cluster 
computers, we can see that multiple queries can run in parallel 
on the most efficient nodes. The node with a better estimate cost 
has a higher priority to be selected to process a query. So the 
total response time of the  query set can be greatly decreased.  

4. Experimental Performance Studies 
We conduct experiments to compare the performance of 
AutoClust with that of a baseline algorithm, denoted as 
“NoPartition” where no database partitioning is performed for 
the database table, on a single computer as well as on a cluster 
computer using the popular TPC-H benchmark [25].  Below we 
describe the experiments and report their results. 

4.1. Test results for AutoClust on a single 
computer 
We evaluate AutoClust’s performance on a single computer by 
running the TPC-H benchmark queries [25] on a desktop 
computer with a processor of Intel Core 2 Quad Q8400, RAM of 
3 GB and hard disk of 300 GB. The database system is Oracle 
11g Express Edition.  The AutoClust algorithm is implemented 
in Java.  

In our experiment we first randomly assign the query frequency 
to each query, and then select queries corresponding to each 
database table as the input of the AutoClust algorithm. We take 
the ORDERS table from the TPC-H benchmark as an example 
to show the experiment. For the ORDERS table, there are 12 
TPC-H queries accessing it, which  are Q3, Q4, Q5, Q7, Q8, Q9, 
Q10, Q12, Q13, Q18, Q21 and Q22. After we run AutoClust  
using those 12 queries, we got 33 candidate attribute clustering 
solutions. Then we calculate the aggregate cost for each 
candidate solution and select the one with the least aggregate 
cost as the best solution since less cost means less query  

 

response time.  In our experiment,  this is the solution with the 
aggregate cost of 3003 calculated using the cost of each query 
listed in the last row of  Table 9 (1491*14.27%+1491*16.98% 
+1491*16.00%+7867*3.79%+1491*1.00%+1491*0.11%+1491
*16.35%+6895*3.62%+13693*2.13%+7867*6.14%+4548*13.8
8%+1491*5.72%=3003). 

Comparing with the cost of NoPartition, which is 6633 as 
estimated by the query optimizer, we have an improvement of 
55% when accessing data from the ORDERS table that is 
partitioned using the attribute clustering solution produced by 
AutoClust.  We did experiments for all database tables in the 
TPC-H benchmark, the results of which are shown in  Table 10. 
From the results we can see that AutoClust can significantly 
reduce the estimate query cost when queries accessing data from 
different tables. In other words,  query response time will be 
reduced if we use AutoClust to do vertical partitioning before 
we process queries. 

We also conduct tests on two other major commercial databases, 
SQL Server and DB2. We got very similar results showing that  
AutoClust can greatly reduce query cost. 

4.2. Test results for AutoClust on cluster 
computers 
We evaluate AutoClust performance on cluster computers by 
executing the TPC-H queries on the super computer OSCER 
[20] located at the University of Oklahoma using 2, 4, 8, 16, 32 
computer nodes running the Oracle database system for 10,000 
queries.  We study the impacts of number of computer nodes 
and database table size on the performance.  From Table 10 we 
can see that the SUPPLIER and ORDERS tables have the 
improvement close to the average, but the ORDERS table has 
more rows and attributes, so we select the ORDERS table in our 
test  to evaluate the impact of number of computer nodes. 



Table 9. Solution selected for the ORDERS table 

Solution [{O_CLERK,O_COMMENT,O_ORDERSTATUS,O_ORDERKEY},{O_CUSTKEY,O_ORDERDATE,O_SHIPPRIORIT
Y,O_ORDERKEY}, {O_ORDERPRIORITY,O_ORDERKEY},{O_TOTOALPRICE,O_ORDERKEY}] 

Query  Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q13 Q18 Q21 Q22 
Frequency 

(%) 
14.27 16.98 16.00 3.79 1.00 0.11 16.35 3.62 2.13 6.14 13.88 5.72 

 Cost for 
Each Query 

1491 1491 1491 7867 1491 1491 1491 6895 13693 7867 4548 1491 

 
Table 10. Comparison of AutoClust and NoPartition  on a single computer 

 
Table Name 

Number of 
Rows 

 

Number of 
Attributes 

Row size 
(Bytes) 

% Cost Improvement of 
AutoClust over NoPartition 

REGION 5 3 118 0 
NATION 25 4 98 0 

SUPPLIER 10,000 7 145 53% 
CUSTOMER 150,000 8 160 10% 

PART 200,000 9 133 23% 
PARTSUPP 800,000 9 144 85% 
ORDERS 1,500,000 9 112 55% 

LINEITEM 6,000,000 16 127 10% 

 

A. Impacts of number of computer nodes  
When we run AutoClust on the ORDERS table, we get 4 
candidate attribute clustering solutions that have good 
improvement comparing with NoPartition, which we show in 
Table 11.  Note that in order to simplify the description, we use 
letters A, B, C, etc. to represent the attributes in the ORDERS 
table. When the number of nodes equals to 2, the first two 
candidate solutions which have the best aggregate costs are 
implemented on the two nodes. When the number of nodes 
equals to 4, 8, 16 or 32, all candidate solutions are implemented 
on the nodes. As shown in Figure 5, when the number of nodes 
increases, both algorithms perform better, but on average 
AutoClust is 50% better than NoPartition. 

B. Impact of database table size 
We test all database tables in the TPC-H benchmark on 16 
nodes.  For the two smallest tables, Region and Nation, 

AutoClust and NoPartition yield the same performance.  For all 
other tables which have bigger sizes, AutoClust always performs 
better than NoPartition, ranging from an improvement from 10% 
to 85%. 

Figure 5. Impacts of number of computer nodes in a cluster computer 

 

Table 11.AutoClust’s candidate attribute clustering 
solutions for the ORDERS table 

Candidate solutions 
Aggregate 

cost 
[{ABGE},{CDHE},{FE},{IE}] 3003 

[{ABGE},{CDE},{FE},{HE},{IE}] 4516 
[{ABGE},{CDIE},{FHE}] 4604 

[{ABGE},{CDE},{FHE},{IE}] 4815 



 

Figure 6. Impacts of database table size: AutoClust improvement over NoPartition on a 16 nodes computer for different database 
tables 

5. Conclusions 
In this paper, we presented an efficient algorithm, AutoClust, for 
database attribute clustering (also known as database vertical 
partitioning)  on single computers as well as on cluster 
computers. This algorithm uses data mining to find  closed item 
sets based on a set of queries performed on a database table and 
uses those itemsets to discover how to put the attributes of the 
table into clusters, i.e. how to vertically partition the table. 
AutoClust can generate multiple attribute clustering solutions 
which can then be implemented on a cluster computer to deal 
with different queries so that the database system can always run 
queries on the best node having the least cost solution.  
Experimental results using the TPC-H benchmark and the 
commercial database management system, Oracle, show that 
AutoClust performs much better than the NoPartition algorithm 
for both single computers and cluster computers.    

For future work, we will conduct experiments  to compare 
AutoClust with some other vertical partitioning algorithms, such 
as [1].AutoClust should be able to run automatically and 
periodically to test the performance of the database and decide 
whether or not a new database partition structure should be 
implemented. So we  plan to incorporate into AutoClust   a 
mechanism to automatically detect the change in the system 
performance and conduct  appropriate database reclustering.  
Currently we do not consider the band cost since our test was 
done on a super computer with high speed LAN connection. But 
in real life two database servers may be located very far from 
each other; so in our future work, we will use the Message 
Passing Interface (MPI) [13] model and take into account other 
costs [14] such as latency and bandwidth apart from the 
execution time itself for each query. 
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