
Autonomous Database Partitioning using Data Mining on
Single Computers and Cluster Computers

Liangzhe Li
School of Computer Science

University of Oklahoma
Norman, OK 73019, USA

lzli@ou.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73019, USA
ggruenwald@ou.edu

Abstract
One of the most important metrics in measuring the performance
of a database system is query response time, which is composed
of I/O time and CPU time. I/O time is decided by the amount of
data read/write from/to disks and how the data is located on
disks. CPU time is decided by how the database system
performs the query operations. So if we want to reduce the query
response time we can reduce either I/O time or CPU time, or
both of them. We know retrieving data from disks is much
slower than retrieving data from main memory. Hence, one of
the common ways to reduce I/O times is clustering data on disks
so that queries will access only relevant data. This paper
introduces an efficient algorithm, called AutoClust, for
automatic database attribute clustering (or also called automatic
database vertical partitioning) for single computers as well as
cluster computers. It is based on closed item sets mined from
queries and their attributes using association rule mining. The
paper then presents experimental results comparing the
performance of AutoClust with that of a baseline algorithm on
both single computers and cluster computers using the TPC-H
benchmark running on major commercial database systems.
The experiments show that AutoClust has better query costs for
both types of computers.

Keywords
Vertical Partitioning, Attribute Clustering, Cluster Computer,
Query Optimizer

1. Introduction
In a digital age, many business or scientific decisions cannot be
made without an analysis on large amounts of data. Therefore
databases are widely used in many application areas. A database
application’s performance highly depends on how quickly data
could be retrieved from the database. When the database size is
small, the time spent on reading/writing data from/to disk and
operating (selecting, merging, filtering, etc.) data is usually
small, and thus its impacts on query response time may not be
very critical. However, today with database size getting bigger
and bigger like those in bio-science, finance and medicine, if the

database is not organized properly, such time overhead could
yield unacceptable query response time.

Vertical partitioning and horizontal partitioning are two major
techniques which can considerably improve query response time
when physical database design is performed [2]. Today, most
database systems support horizontal partitioning [24]. Three
common horizontal partitioning approaches that are used by
most database developers are range partitioning, list partitioning
and hash partitioning [2]; but it is rare to find a database system
that has a sophisticated algorithm to support vertical
partitioning.

As query response time is composed of I/O time and CPU time,
reduction on either of them can lead to an improvement of the
database application’s performance. Without partitioning
databases, when the database system processes a query that
accesses some attributes in a relation, the whole relation, rather
than just those attributes, will be read from secondary memory.
If we reorganize database tables in such a way that each table is
partitioned vertically into sub-tables and the database system,
when executing the query, will access only the relevant sub-
table that contains the attributes in the query, then fewer pages
from secondary memory will be accessed to process the query
[17], which reduces I/O time, and thus can lead to a better query
response time.

Cluster computers[5] can be used to deploy database to improve
performance [23]. As query sets may change, optimal physical
database design and database self tuning attract more and more
attention [9][6][12]. Vertical partitioning (or also called attribute
clustering) on tables is one way that can help designers achieve
the performance goal. A clever algorithm is needed to
automatically provide different partitioning solutions which can
be implemented on different nodes of the cluster computers so
that queries can always be processed on the best nodes.

In this paper we introduce a technique called AutoClust which
combines data mining and parallelism together to automatically
perform attribute clustering in order to reduce the cost of I/Os on
cluster computers when processing queries. A preliminary
version of AutoClust without any performance studies was
presented in [10].The algorithm uses query frequencies and
attributes accessed by queries to generate attribute clusters
automatically based on closed item sets [22] mined from the
attributes found in the queries processed by the database system.
The best attribute clustering solution is the one that has the best
cost estimated by the query optimizer. The most important part
of this algorithm is that it can be implemented for distributed
databases located on a cluster computer where two or more
computers are linked together by a network and work together as
a single integrated system. AutoClust can generate more than
one solution for a table based on a query set. A table may have

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IDEAS12 2012, August 8-10, Prague [Czech Republic]
Editors: Bipin C. Desai, JaroslavPokorny, Jorge Bernardino
Copyright ©2012 ACM 978-1-4503-1234-9/12/08 $15.00

different optimal attribute clustering solutions according to
different queries and those different optimal solutions can be
implemented on different nodes of a cluster computer so that a
query can always be processed on the node with the best
solution.

The remainder of this paper is organized as follows. In Section
2, we review the related work on database attributes clustering.
In Section 3 we introduce the AutoClust algorithm for a single
computer and then extend it to a cluster computer. In Section 4,
we present the experimental comparison results between
AutoClust and a baseline algorithm for both single computers
and cluster computers using the TPC-H benchmark. Finally we
give our conclusions and future work in Section 5.

2. Related Work
As discussed in [10], how to minimize disk I/Os is an important
topic since the early 1970s. From that time on, algorithms have
been developed to reduce I/Os by clustering huge complex data
arrays in order to reduce pages reading from secondary memory
[8]. Those algorithms can be categorized into three major
categories: attributes affinity based, transaction based, and graph
theory based vertical partitioning. In attribute affinity based
vertical partitioning, a two dimensional matrix, which contains
the information of what attribute appears in what query, is built
according to a query set and the partitioning algorithm is based
on this matrix. In transaction based vertical partitioning,
transactions are considered to have more semantic meanings
than attributes and a binary partitioning method is used based
on a selected set of important transactions. In graph theory based
vertical partitioning, a complete graph is used to replace the
attributes affinity matrix. Each meaningful partition fragment is
generated when the algorithm detects a certain cycle in the
graph. Some algorithms combine two different groups together.

The first well-known attribute clustering algorithm was
introduced in 1972 with the name of Bond Energy Algorithm
(BEA) [16]. This algorithm is an attributes affinity based
algorithm. It uses a two dimension array to represent the
relationship between two different kinds of variables, row
variable and column variable. Each column represents one kind
of variable and each row represents the other kind of variable.
Each element in the array is represented by a numerical value,
which usually is an integer, to show the relationship between
the row and column variables corresponding to this element.
This algorithm permutates rows and columns of the array in
order to group elements with similar values together. At the end
of the algorithm, elements with similar values are located in the
same block in the array and each block can be considered as a
cluster. When doing permutation on the array, the algorithm
needs user’s subjective judgment to tell the similarity of
elements; so this algorithm is hard to implement without
human’s interpretation. Sometimes blocks may have overlaps
and some elements do not belong to any block. It means the
clustering result is not always as good as what people expect.

Later after the development of BEA, another new important
algorithm emerged, which was called Navathe’s Vertical
Partitioning (NVP) [17]. NVP is also an affinity matrix based
algorithm. This was the first time that a clustering algorithm
considers the frequency of queries and reflects the frequency in
the attributes affinity matrix on which clustering was performed.
NVP is an extension and improvement of BEA. This algorithm
repeatedly does binary vertical partitioning (BVP) on a larger
fragment, which is gotten from the previous BVP, to form two

fragments: one larger fragment and one smaller fragment until
no more fragment can be partitioned. An evaluation function,
which replaces the human’s subjective judgment, is used for
automatic fragments selection. NVP even considers the situation
when it is implemented on a distributed database on multiple
sites. However O(2n) time complexity where n is the number of
times binary partitioning (which is proportional to the number of
queries) is repeated makes this algorithm expensive. If fragment
overlapping is allowed, the time complexity will be even bigger
than that. So this algorithm is only suitable for those tables with
a small number of attributes.

Because of the poor time complexity of NVP, a new transaction
based vertical partitioning technique, called Optimal Binary
Partitioning algorithm (OBP), was proposed [26]. This
algorithm constructs a binary search tree using the branch and
bound method [11]. Each node of the tree represents a
transaction. The left branch of a node represents those attributes
being queried by the transaction that are included in a reasonable
cut (if a binary cut that partitions the attributes into two sets in
which at least one of them is a contained fragment which is the
union of a set of attributes that the transaction accesses then this
binary cut is a reasonable cut). The right branch of a node
represents the remaining attributes. If all attributes of an
unassigned transaction are contained in the fragment of the
current node, then this transaction needs not be considered as the
child of the current node. This algorithm focuses on a set of
important transactions rather than attributes themselves. It does
reduce time considerably compared to NVP but the run time still
grows exponentially when the number of transactions grows. So
it is not an ideal technique for heavy transaction systems.

Some algorithms use a graph search technique when doing data
clustering. [18] is one of the examples. It is a graph theory based
clustering technique. The attributes that are usually queried
together are used to form a similarity graph. Vertices of the
graph are elements and edges connect elements that have
similarity values higher than a predefined threshold. Clusters are
the sub-graphs with edge connectivity containing more than half
of the number of vertices. When this technique is implemented
for database vertical partitioning, a vertex represents an attribute
and an edge represents how often the two attributes connected
by this edge will appear together in the same transaction. Then
the algorithm will traverse the graph and divide the graph into
several sub graphs, each of which represents a cluster. This
technique considers frequent transactions and infrequent
transactions to be the same and this will lead to an inefficient
partitioning result. This is because attributes that are usually
accessed together in infrequent transactions but are not accessed
together in frequent transactions may be put in the same
fragment if all transactions are considered to be the same.
Along with the increase of processor’s speed and the
sophistication of software, database systems become cleverer
and more powerful than ever before. Researchers then realized
that a database system itself can give a lot of help on physical
database design to developers. A new idea of using query
optimizer of a database system for automated physical design
was proposed in [21]. The author introduced a cost estimation
technique, which uses the query optimizer of a database system
for physical database design.

In [1], a vertical partitioning algorithm that uses the idea of
performing clustering based on an attributes affinity matrix from
[17] was proposed. This algorithm starts with a vertex V that
satisfies the least degree of reflexivity and then finds a vertex

with the max degree of symmetry among V’s neighbors. Once
such a neighbor is found, both V and its neighbor are put in a
subset. The neighbor would become the new V. The process
would continue to search neighbors of the most recent V
recursively until a cycle is formed or no vertex is left. After that,
the fragments will be refined using a hit ratio function. The
disadvantage of this technique is similar to the disadvantage in
[18]. Infrequent queries are treated the same as frequent queries.

A dynamic vertical partitioning of distributed systems, called
DYVEP, was proposed in [24]. DYVEP monitors queries in
order to accumulate relevant statistics for the vertical
partitioning process. It analyzes the statistics in order to
determine if a new partitioning is necessary; if yes, it triggers a
vertical partitioning technique (VPT) to generate a new
partitioning solution. The VPT could be any existing VPT that
can make use of the available statistics. The algorithm then
check to see if the new partitioning solution is better that the one
in place; if yes, then the system reorganizes the database
according to the new partitioning solution. This algorithm
depends heavily on the existing VPT used and the set of rules
that it develops to decide when to trigger the VPT. The
algorithm does not address how it would take advantage of
distributed databases that have partial or full replication so that
queries can be directed to nodes that yield the best costs to
execute them.

Though there are many database vertical partitioning algorithms,
the efficient execution of ad-hoc heavy-weight On-Line
Analytical Processing (OLAP) queries is still an open problem.
Today cluster computers are widely used for solving such a
problem. That is why database clustering has gained much
interest for various database applications [4]. In the meanwhile,
some partitioning algorithms have been developed for
distributed databases on cluster computers (e.g. [7] and [1]).
Some of them are table level algorithms (e.g. [1]) and some of
them are schema level algorithms (e.g. [7]).

The key idea of schema level partitioning is that for a large
number of database schemas and applications, transactions only
access a small number of related rows which can be potentially
spread across a number of tables. A recent typical schema level
algorithm is ElasTraS[7], which takes the root table of a tree
structure schema as the primary partitioning table and other
nodes of the tree as the secondary partitioning table. The
primary partitioning relation is partitioned independent of the
other tables using its primary key. Because the primary table’s
key is part of the keys of all the secondary tables, the secondary
partitioning tables are partitioned based on the primary table’s
partition key. Then all partitions will be spread across several
Owning Transaction Managers, which own one or more
partitions and provide transactional guarantees on them.
Analyzing a schema is much more difficult than analyzing a
table and this algorithm is generally configured for static
partitioning purposes.

Table level distributed database partitioning on cluster
computers is easier than schema level partitioning since all
single node partitioning algorithms, like those we discussed
earlier ([16][17][26][18][1][24]), can be deployed on multiple
nodes; however, their disadvantages still exist on each node.
Researchers have recognized that attributes vertical partitioning
for distributed database on cluster computers needs an algorithm
which can generate multiple solutions at a time so that different
solutions can be deployed on different nodes for appropriate

queries. This means that for a particular query it can always be
directed to the node with the best solution for processing. In
[10], the preliminary work for such an algorithm was described.
In this paper, we provide details on the algorithm and its
performance results.

A lot of evaluation work has been done on evaluating the
performance of distributed databases on cluster computers. The
results show that distributed databases can greatly improve the
performance and satisfy business requirements [23]. Because of
this, distributed databases have become widely used and
important for many applications, which call for more research to
find ways to improve their physical database design. Some
researchers have proposed schema level tuning [7], table level
horizontal partitioning [15], and table level vertical partitioning
[17][26][18][1][24]. However, as we have discussed in the
previous paragraphs, schema level partitioning is generally for
static purposes and all table level partitioning algorithms we
have reviewed have different weaknesses. Researchers are still
looking for a better vertical partitioning algorithm which can be
used together with a horizontal partitioning algorithm. In the
next sections we present AutoClust, an automatic attribute
clustering algorithm for both single computers and cluster
computers, and performance evaluation comparing it with a
baseline algorithm. A preliminary version of the algorithm
without performance evaluation was presented earlier in [10]. In
this paper, we further detail the extension version for cluster
computers and provide performance studies for both single
computers and cluster computers.

3. AutoClust
3.1. AutoClust on a Single Computer
AutoClust for a single computer was first introduced in [10].
However, In that paper, as AutoClust was still in its early stage
of research, no performance studies were conducted. In this
section, we summarize the key ideas of AutoClust and present
experimental studies comparing the performance of AutoClust
with a baseline case where the database table is in its original
form without any partitioning. The AutoClust algorithm can be
divided into five steps. In Step 1, an attributes usage matrix is
built based on a query set showing which attributes are accessed
by which queries. In Step 2, the closed item sets (CIS) [22] of
attributes are mined in order to identify which attributes are
accessed frequently by the same query. An item set is called
closed if it has no superset having the same support which is the
fraction of transactions in a data set where the item set appears
as a subset [22]. For such attribute sets we need to keep them
together as an independent cluster as much as possible. In Step
3, augmentations to add the primary key of the original table to
each existing closed item set are done to form the augment
closed item set (ACIS) which is a combination of CIS and the
primary key. Then we will remove duplicate ACIS. In Step 4 an
execution tree is generated where each leaf represents a
candidate attribute clustering solution. Finally, in Step 5, the
solutions are submitted to its query optimizer of the database
system that will process the queries for cost estimation and the
solution with the best cost estimation is chosen as the final
solution. The cost we mentioned here is based on a special unit
of workload used by the query optimizer to estimate how much
work needs to be done in order to process the query. This query
cost includes I/O cost and operator (or CPU) cost. We use “cost”
to represent the total of the two types of costs in our examples
and experimental results unless we specify the individual type
of cost specifically.

Figure 1. Execution tree without partitioning

Figure 2. Execution tree with sub-trees (branches) partitioning

The execution plan generated by the query optimizer for a query
is usually a tree structure. In a cost based optimization (CBO)
system, one or more mechanism for returning data will be given
for a query. This mechanism is represented either in a graphic
mode or a textual mode. The system will choose the mechanism
with the least cost as the final plan used to execute the query
[19] [3]. Data access for each table can be regarded as a portion
of the whole execution tree. We can partition each table to
reduce the cost for each sub-tree so that we reduce the total cost
for the entire execution tree. For instance, an execution tree in
SQL Server (Figure 1) can be changed to a larger execution tree
(Figure 2) when we do partition on its branches. Once we
compare the cost table 1 and cost table 2 we can see that the
total cost decreases.

Below we provide the key ideas of the five steps of AutoClust
for a single computer. More details can be found in [10].

Table 1. Estimate cost of Figure 1

Circle
No.

Operation
Est.
Cost

Circle 1 Index scan on ORDERS table 18.04

Circle 2 Index scan on LINEITEM table 83.86

Circle 3 Merge join 16.23

Table 2. Estimate cost of Figure 2

Circle
No.

Operation
Est.
Cost

Circle 1
Get data from LINETEM_1 and

LINEITEM_2 tables and then join
them together

75.8

Circle 2 Get data from ORDERS_2 table 4.95

Circle 3 Merge join 16.23

Step 1: Build the Frequency-Weighted Attribute Usage
Matrix
A frequency-weighted usage matrix is built based on attribute
affinity matrix [17]. Each row of the frequency-weighted
attribute usage matrix represents what attributes are accessed by
the corresponding query and what is the percentage the query
takes in the whole query sets.

Step 2: Mining the Closed Item sets
In order to reduce I/O’s when a query accesses data, attributes in
a database table that are queried together by the same query

should be put in one cluster. In other words, we need to find the
attributes set which is the maximal attributes set contained in the
same queries. Such attributes set is a closed item set [22].

Step 3: Filtering the Closed Item Sets
Once we have mined all the closed item sets, we augment them
by adding the primary key of the database table to each set and
remove the duplicate closed item sets. Then we get the
augmented closed item sets (ACIS).

Step 4: Generating all possible attribute clustering solutions
based on Augmented Closed Item Sets.
In this step an execution tree is constructed. The root of the tree
is the item set that contains unused attributes (i.e. those that are
not in any ACIS) and the primary key of the database table. The
tree is extended by adding possible ACIS until all attributes are
included in one leaf. Each leaf of the tree represents a valid
candidate attribute clustering solution.

Step 5: Determining the best attribute clustering solution
Each solution generated in Step 4 is implemented on a database
system and the aggregate query cost is estimated using the
database internal query optimizer. The solution with the least
aggregate cost is chosen as the best attribute clustering solution.

3.2. AutoClust on Cluster Computers with
Full Replication on Every Computer Node
Computers linked together through a high speed network can
work together as a single integrated system in order to improve
performance. This system is called a cluster computing system
[5]. When a database application is deployed on a cluster
computing system, AutoClust can be used to perform vertical
partitioning on the database and it can greatly decrease the query
response time for the whole system. In [10], the preliminary
extension of AutoClust without any performance evaluation was
presented for two cases: 1) when the database is replicated on
every computer node and 2) when the database is not replicated.
Here we provide the detailed extension and performance
evaluation for the first case. AutoClust can generate multiple
attribute clustering solutions at a time and a different solution
may have a different query cost for the same query. We can
implement different solutions on different nodes so that a query
can always be executed on the node with the best solution for
the query. If this node happens to be busy then the query can be
executed on the node with the second best solution, and so on.
This can greatly benefit the system performance.

Formally, to do vertical partitioning or attribute clustering for a
database table on cluster computers that have full data
replication, AutoClust performs the steps described below. In
order to make these steps more understandable we will use an
example to explain each step. The database table and queries of
the example come from the TPC-H benchmark [25]. The
database table is SUPPLIER as shown in Table 3 and the ten
queries out of the twenty-two TPC-H queries as shown in Table
4 access this database table. The queries’ frequencies are
generated randomly.

Table 3. Attributes information of the database table
SUPPLIER

Attribute Name Database Table Data Type
S_ACCTBAL (A) Supplier Decimal
S_ADDRESS (B) Supplier Varchar

S_COMMENT (C) Supplier Varchar
S_NAME (D) Supplier Char

S_NATIONKEY (E) Supplier Int
S_PHONE(F) Supplier Char

S_SUPPKEY(G) Supplier Int

Table 4. Attribute usage matrix

Queries Attributes Frequency
(%) A B C D E F G

q1 1 1 1 1 1 1 1 14.09
q2 0 0 0 0 1 0 1 16.96
q3 0 0 0 0 1 0 1 4.01
q4 0 0 0 0 1 0 1 1.06
q5 0 0 0 0 1 0 1 0.12
q6 0 0 0 0 1 0 1 14.26
q7 0 1 0 1 0 1 1 1.06
q8 0 0 1 0 0 0 1 19.26
q9 0 1 0 1 1 0 1 14.46
q10 0 0 0 1 1 0 0 14.72

Figure 3. Execution tree generated by AutoClust for a single
computer on the SUPPLIER table

Step 1: run Steps 1 – 4 of the AutoClust algorithm for a single
computer. This step will produce the possible attribute
clustering solutions for one computer node. The AutoClust
algorithm for a single computer will generate the execution tree
to get the candidate attribute clustering solutions Si’s where each
Si is a set of attributes. The execution tree is shown in Figure 3.
Once the execution tree is built successfully the cost is
produced as shown in Table 5.

Table 5. Estimate costs for candidate attribute clustering solutions

Solution Estimate Query Cost Produced by Query Optimizer Aggregate cost
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

S1 98 7 7 7 7 7 49 32 44 26 33
S2 90 18 18 18 18 18 49 32 36 18 34
S3 89 7 7 7 7 7 40 32 35 35 32
S4 82 7 7 7 7 7 33 32 41 41 33
S5 82 28 28 28 28 28 41 32 28 28 37
S6 68 68 68 68 68 68 68 68 68 68 68

Table 6. Estimate costs for possible candidate attribute clustering solutions after ranking

Solution Estimate Query Cost Produced by the Query Optimizer Aggregate cost

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
S3 89 7 7 7 7 7 40 32 35 35 32
S4 82 7 7 7 7 7 33 32 41 41 33
S1 98 7 7 7 7 7 49 32 44 26 33
S2 90 18 18 18 18 18 49 32 36 18 34
S5 82 28 28 28 28 28 41 32 28 28 37
S6 68 68 68 68 68 68 68 68 68 68 68

Step 2: rank the solutions in increasing order based on their
aggregate costs as the solutions will be chosen later in Step 4
based on their increasing order of aggregate costs for
implementation on computer nodes (i.e. the best solution will be
chosen first). Applying Step 2 on Table 5, we get Table 6.

Step 3: remove the solutions the costs of which are larger than
the cost of NoPartition. When we do attribute clustering on a
database we can decrease the I/O cost, but the trade-off is that
we might increase the chance of join operations, which leads to
an increase in the operator cost. So, this removal is necessary to
avoid the case of over-partitioning. For the SUPPLIER table in
our example, the estimate query cost is 68 for NoPartition, and
as we can see in Table 6, no solution has an aggregate cost
larger than 68, so we do not need to remove any solution in this
step.

Step 4: from the solutions resulted from Step 3, implement
them on the computer nodes according to the increasing order of
the solutions’ aggregate costs so that the best solution is
implemented on the first node, the second best solution on the
second node, and so on. If there are still nodes remaining after

all the solutions have been implemented, then repeat the loop
again, i.e., implementing the best solution on the first remaining
node, the second best solution on the second remaining node,
and so on. As an example, if our cluster computers have three
nodes, node 1, node 2 and node 3, then we will implement the
first three solutions highlighted in Table 6 on these three nodes,
i.e., S3 on node 1, S4 on node 2, and S1 on node 3.

Step 5: from the results generated in Step 1, construct an
attribute clustering solution choice table as shown in Table 7
that shows which solution is the best, second best, and so on for
each query. Then from this table and from the solution
implementation in Step 4, construct a query routing table as
shown in Table 8 that shows which implemented solution (and
on which node it is implemented) is the best, second best, and so
on for each query so that when a query arrives, it will be
directed to the node where its best solution is implemented. If
this node is busy, then the query will be routed to its second best
node, and so on. For example, when query q1 arrives, it will be
directed to the first node of its first choice, which is node S4 in
Table 8. If this node is busy, then q1 will be directed to the
implemented node of its second choice, which is node S3.

The AutoClust algorithm on cluster computers is shown in
Figure 4.

Table 7. Best attribute clustering choices for each query

Choices Queries
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

1st S6 S3 S3 S3 S3 S3 S4 S3 S5 S2
2nd S4 S4 S4 S4 S4 S4 S3 S4 S3 S1
3rd S5 S1 S1 S1 S1 S1 S5 S1 S2 S5
4th S3 S2 S2 S2 S2 S2 S1 S2 S4 S3
5th S2 S5 S5 S5 S5 S5 S2 S5 S1 S4
6th S1 S6 S6 S6 S6 S6 S6 S6 S6 S6

Table 8. Query routing table for a 3 nodes cluster computer

Choices Queries
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

1st S4 S3 S3 S3 S3 S3 S4 S3 S3 S1
2nd S3 S4 S4 S4 S4 S4 S3 S4 S4 S3
3rd S1 S1 S1 S1 S1 S1 S1 S1 S1 S4

Figure 4. The AutoClust algorithm on cluster computers

Run Steps 1-4 of AutoClust for one node to generate the set S of all possible clustering solutions;
Sort solutions in S into increasing order of their aggregate query costs;
For each solution Si in S
 If cost of Si> cost of NoPartition
 Then remove Si from S
 End If
End For;
//Implement solutions on nodes
Index of solution to use i = 1 //start with the first solution in the solution set S;
While number of remaining nodes n > 0
 If Index of solution to use i = 0 //last solution is reached
 Then index of solution to use i =1 //reset i to start from beginning of solution set S again
 End If;
 Implemented Solution IS = solution Si in S;
 Implement IS on node Ci
 i = i – 1 //go to next solution in set S;
 n = n – 1 //go to next computer node;
End While;
//Construct query routing
For each query Qi
 Sort the solutions in increasing order of their average costs to perform the query Qi and store them in column Qi in the Routing RT[Qi];
 For each Si in RT[Qi]
 If Si is not implemented
 Then delete Si from RT[Qi]
 End If
 End For
End For

From the procedure of how AutoClust works on cluster
computers, we can see that multiple queries can run in parallel
on the most efficient nodes. The node with a better estimate cost
has a higher priority to be selected to process a query. So the
total response time of the query set can be greatly decreased.

4. Experimental Performance Studies
We conduct experiments to compare the performance of
AutoClust with that of a baseline algorithm, denoted as
“NoPartition” where no database partitioning is performed for
the database table, on a single computer as well as on a cluster
computer using the popular TPC-H benchmark [25]. Below we
describe the experiments and report their results.

4.1. Test results for AutoClust on a single
computer
We evaluate AutoClust’s performance on a single computer by
running the TPC-H benchmark queries [25] on a desktop
computer with a processor of Intel Core 2 Quad Q8400, RAM of
3 GB and hard disk of 300 GB. The database system is Oracle
11g Express Edition. The AutoClust algorithm is implemented
in Java.

In our experiment we first randomly assign the query frequency
to each query, and then select queries corresponding to each
database table as the input of the AutoClust algorithm. We take
the ORDERS table from the TPC-H benchmark as an example
to show the experiment. For the ORDERS table, there are 12
TPC-H queries accessing it, which are Q3, Q4, Q5, Q7, Q8, Q9,
Q10, Q12, Q13, Q18, Q21 and Q22. After we run AutoClust
using those 12 queries, we got 33 candidate attribute clustering
solutions. Then we calculate the aggregate cost for each
candidate solution and select the one with the least aggregate
cost as the best solution since less cost means less query

response time. In our experiment, this is the solution with the
aggregate cost of 3003 calculated using the cost of each query
listed in the last row of Table 9 (1491*14.27%+1491*16.98%
+1491*16.00%+7867*3.79%+1491*1.00%+1491*0.11%+1491
*16.35%+6895*3.62%+13693*2.13%+7867*6.14%+4548*13.8
8%+1491*5.72%=3003).

Comparing with the cost of NoPartition, which is 6633 as
estimated by the query optimizer, we have an improvement of
55% when accessing data from the ORDERS table that is
partitioned using the attribute clustering solution produced by
AutoClust. We did experiments for all database tables in the
TPC-H benchmark, the results of which are shown in Table 10.
From the results we can see that AutoClust can significantly
reduce the estimate query cost when queries accessing data from
different tables. In other words, query response time will be
reduced if we use AutoClust to do vertical partitioning before
we process queries.

We also conduct tests on two other major commercial databases,
SQL Server and DB2. We got very similar results showing that
AutoClust can greatly reduce query cost.

4.2. Test results for AutoClust on cluster
computers
We evaluate AutoClust performance on cluster computers by
executing the TPC-H queries on the super computer OSCER
[20] located at the University of Oklahoma using 2, 4, 8, 16, 32
computer nodes running the Oracle database system for 10,000
queries. We study the impacts of number of computer nodes
and database table size on the performance. From Table 10 we
can see that the SUPPLIER and ORDERS tables have the
improvement close to the average, but the ORDERS table has
more rows and attributes, so we select the ORDERS table in our
test to evaluate the impact of number of computer nodes.

Table 9. Solution selected for the ORDERS table

Solution [{O_CLERK,O_COMMENT,O_ORDERSTATUS,O_ORDERKEY},{O_CUSTKEY,O_ORDERDATE,O_SHIPPRIORIT
Y,O_ORDERKEY}, {O_ORDERPRIORITY,O_ORDERKEY},{O_TOTOALPRICE,O_ORDERKEY}]

Query Q3 Q4 Q5 Q7 Q8 Q9 Q10 Q12 Q13 Q18 Q21 Q22
Frequency

(%)
14.27 16.98 16.00 3.79 1.00 0.11 16.35 3.62 2.13 6.14 13.88 5.72

 Cost for
Each Query

1491 1491 1491 7867 1491 1491 1491 6895 13693 7867 4548 1491

Table 10. Comparison of AutoClust and NoPartition on a single computer

Table Name

Number of
Rows

Number of
Attributes

Row size
(Bytes)

% Cost Improvement of
AutoClust over NoPartition

REGION 5 3 118 0
NATION 25 4 98 0

SUPPLIER 10,000 7 145 53%
CUSTOMER 150,000 8 160 10%

PART 200,000 9 133 23%
PARTSUPP 800,000 9 144 85%
ORDERS 1,500,000 9 112 55%

LINEITEM 6,000,000 16 127 10%

A. Impacts of number of computer nodes
When we run AutoClust on the ORDERS table, we get 4
candidate attribute clustering solutions that have good
improvement comparing with NoPartition, which we show in
Table 11. Note that in order to simplify the description, we use
letters A, B, C, etc. to represent the attributes in the ORDERS
table. When the number of nodes equals to 2, the first two
candidate solutions which have the best aggregate costs are
implemented on the two nodes. When the number of nodes
equals to 4, 8, 16 or 32, all candidate solutions are implemented
on the nodes. As shown in Figure 5, when the number of nodes
increases, both algorithms perform better, but on average
AutoClust is 50% better than NoPartition.

B. Impact of database table size
We test all database tables in the TPC-H benchmark on 16
nodes. For the two smallest tables, Region and Nation,

AutoClust and NoPartition yield the same performance. For all
other tables which have bigger sizes, AutoClust always performs
better than NoPartition, ranging from an improvement from 10%
to 85%.

Figure 5. Impacts of number of computer nodes in a cluster computer

Table 11.AutoClust’s candidate attribute clustering
solutions for the ORDERS table

Candidate solutions
Aggregate

cost
[{ABGE},{CDHE},{FE},{IE}] 3003

[{ABGE},{CDE},{FE},{HE},{IE}] 4516
[{ABGE},{CDIE},{FHE}] 4604

[{ABGE},{CDE},{FHE},{IE}] 4815

Figure 6. Impacts of database table size: AutoClust improvement over NoPartition on a 16 nodes computer for different database
tables

5. Conclusions
In this paper, we presented an efficient algorithm, AutoClust, for
database attribute clustering (also known as database vertical
partitioning) on single computers as well as on cluster
computers. This algorithm uses data mining to find closed item
sets based on a set of queries performed on a database table and
uses those itemsets to discover how to put the attributes of the
table into clusters, i.e. how to vertically partition the table.
AutoClust can generate multiple attribute clustering solutions
which can then be implemented on a cluster computer to deal
with different queries so that the database system can always run
queries on the best node having the least cost solution.
Experimental results using the TPC-H benchmark and the
commercial database management system, Oracle, show that
AutoClust performs much better than the NoPartition algorithm
for both single computers and cluster computers.

For future work, we will conduct experiments to compare
AutoClust with some other vertical partitioning algorithms, such
as [1].AutoClust should be able to run automatically and
periodically to test the performance of the database and decide
whether or not a new database partition structure should be
implemented. So we plan to incorporate into AutoClust a
mechanism to automatically detect the change in the system
performance and conduct appropriate database reclustering.
Currently we do not consider the band cost since our test was
done on a super computer with high speed LAN connection. But
in real life two database servers may be located very far from
each other; so in our future work, we will use the Message
Passing Interface (MPI) [13] model and take into account other
costs [14] such as latency and bandwidth apart from the
execution time itself for each query.

References

[1]Abuelyaman, E., S., An Optimized Scheme for Vertical
Partitioning of a Distributed Database, IJCSNS International

Journal of Computer Science and Network Security, Vol.8,
No.1, 2008.

[2]Agrawal, S., Narasayya, V., Yang, B., Integrating Vertical
and Horizontal Partitioning into Automated Physical Database
Design, SIGMOD, June 2004

[3]Agrawal S., Chaudhuri S., Kollar L., Marathe A., Narasayya
V., Syamala M., Database Tuning Advisor for Microsoft SQL
Server 2005: Demo, SIGMOD 2005, June 2005.

[4] Akal, F., Bohm, K., and Schek, H. –J. OLAP Query
Evaluation in a database Cluster: A performance Study on
Intra-query Parallelism. The 6th East European Conference on
Advances in Database and Information Systems. London, UK,
pp. 218-231, 2002.

[5]Baker, M. “Cluster Computing at a Glance” Chapter 1, High
Performance Cluster Computing: Architectures and Systems,
Vol. 1, Prentice Hall, 1st edition, Editor Buyya, R., May 1999.

[6]Chaudhuri, S. and Narasayya, V., Self-Tuning Database
Systems: A Decade of Progress, VLDB 2007, September 2007.

[7] Das, S., Agrawal, D., and Abbadi, A. E. ElasTraS: An Elastic
Transactional Data Store in the Cloud. In USENIX HotCloud,
June 2009.

[8] DeWitt, D. and Gray J., Parallel Database Systems: The
Future of High Performance Database Systems,
Communications of ACM, Volume 35 Issue 6, June 1992.

[9] 2nd International Workshop on Self-Adaptive and
Autonomic Computing Systems. DEXA 2004.

[10]Guinepain, S. andGruenwald, L., Using Cluster Computing
to support Automatic and Dynamic Database Clustering,
IWAPT 2008.

[11] Horowitz, E. and Sahni, S., Fundamentals of Computer
Algorithms, Rockville, MD: Computer Science Press, 1978.

[12] 3rd International Workshop on Self-Managing Database
Systems, ICDE 2008.

[13] Message Passing Interface Forum. MPI: A Message
Passing Interface. In Proc. of Supercomputing ’93, pages 878–
883. IEEE Computer Society Press, November 1993.

[14] Lei Chai, High Performance and Scalable MPI Intra Node
Communication Middleware for Multi Core Clusters, Ohio State
University, 2009

[15] Lima, A., Mattoso, M., Valduriez, P., Adaptive Virtual
Partitioning for OLAP Query Processing in A Database Cluster,
Brazilian Symposium on Databases (SBBD) 2004

[16] McCormick, W. T. Schweitzer P.J., and White T.W.,
Problem Decomposition and Data Reorganization by A
Clustering Technique, Operation Research, Vol. 20, No. 5,
September 1972.

[17]Navathe, S., Ceri, S., Wierhold, G. and Dou, J., Vertical
Partitioning Algorithms for Database Design, ACM
Transactions on Database Systems, Vol. 9, No. 4, December
1984.

[18]Navathe, S. and Ra M., Vertical Partitioning for Database
Design: A Graph Algorithm, ACM SIGMOD International
Conference on Management of Data, 1989

[19] “How the CBO Optimizes SQL Statements for Fast
Response” retrieved from http://docs.oracle.com/cd/B10500_01/
server.920/a96533/optimops.htm#51613

[20]http://oscer.ou.edu

[21] Papadomanolakis, S., Dash, D. and Ailamaki, A., Efficient
Use of the Query Optimizer for Automated Physical Design,
VLDB 2007, Proceedings of the 33rd International Conference
Very Large Databases, September 2007.

[22]Pasquier, N., Bastidem, Y., Taouil, R. and Lakhal, L.
Efficient Mining of Association Rules Using Closed Itemset
Lattices, Information Systems, Vol. 24, No. 1, 1999.

[23] Pukdesree S., Lacharoj V., Sirisang P., Performance
Evaluation of Distributed Database on PC Cluster Computers,
WCECS 2010, October , 2010.

[24]Rodriguez, L. and Li, X., A Dynamic Vertical Partitioning
Approach for Distributed Database System, Systems, Man, and
Cybernetics (SMC), IEEE International Conference 2011.

[25]http://www.tpc.org.

[26] Wesley W. Chu and I. Ieong, A Transaction-Based
Approach to Vertical Partitioning for Relational Database
Systems, IEEE Transactions on Software Engineering, Vol. 19,
No. 8, August 1993.

