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ABSTRACT 
A key factor of measuring database performance is query 
response time, which is dominated by I/O time.  Database 
partitioning is among techniques that can help users reduce the 
I/O time significantly. However, how to efficiently partition 
tables in a database is not an easy problem, especially when we 
want to have this partitioning task done automatically by the 
system itself. This paper introduces an algorithm called Self-
Managing Online Partitioner for Databases (SMOPD) in vertical 
partitioning based on closed item sets mining from a query set 
and system statistic information mined from system statistic 
views. This algorithm can dynamically monitor the database 
performance using user-configured parameters and 
automatically detect the performance trend so that it can decide 
when to perform a re-partitioning action without feedback from 
DBAs. This algorithm can free DBAs from the heavy tasks of 
keeping monitoring the system and struggling against the large 
statistic tables. The paper also presents the experimental results 
evaluating the performance of the algorithm using the TPC-H 
benchmark. 

1. Introduction 

In recent years researchers have been paying more and more 
attention to the development of self-managing database 
algorithms which includes self-managing database indexing [22] 
[19], self-managing database caching [18], self-managing 
database partitioning [1], self-tuning database parameters [17], 
etc. Some of those algorithms are fully automatic while others 
are partially automatic (or semi-automatic).  A fully automatic 
algorithm does not need human interference for feedback when 
the algorithm is running, while a semi-automatic algorithm does. 
The disadvantage of a semi-automatic algorithm is that it relies 
on the experience of the DBA. An experienced DBA means 
more  cost to an organization  and is  hard to be hired  in market. 
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That is why more and more researchers are trying to develop 
fully automatic algorithms for self-managing DBMS [1] [23] 
[24] [25]. These algorithms should have the ability to know 
when the database performance is going down and how to tune 
the database on one or more aspects to get better performance. 
The algorithm we introduce in this paper is an algorithm that has 
a fully automatic online approach and focuses on the vertical 
database partitioning and re-partitioning problem. 

Vertical database partitioning algorithms can be roughly 
classified into two categories: optimizer-independent and 
optimizer-integrated. For an optimizer-independent algorithm, 
the query optimizer of a database system is not involved in the 
algorithm, while for an optimizer-integrated algorithm, the 
query optimizer is used to evaluate the candidate solutions when 
the algorithm is running. Most previous research on database 
partitioning design ([7] [8] [9] [11] [14]) belongs to the first 
category. Our SMOPD belongs to the second category, which 
largely uses the query optimizer as a black-box to perform the 
optimization. The query optimizer performs the what-if calls [2] 
to select a better execution plan which can be used to find out 
the best possible partitioning solution. Those algorithms listed 
above use a fixed workload to decide the partitioning results. 
However, in many cases, the workload keeps changing; so it is 
necessary to have a dynamic partitioning algorithm – an 
algorithm that is able to monitor the database performance, 
determine when a re-partitioning action is needed, and perform 
re-partitioning accordingly.   

In this paper we introduce SMOPD, which uses an online 
approach to monitor the queries running on the database and 
collects the statistic information from the system statistic views 
so that it can detect the performance trend and make the re-
partitioning decision automatically. The remainder of this paper 
is organized as follows. In Section 2 we review the related work 
on database vertical partitioning. In Section 3 we introduce 
SMOPD. In Section 4 we present the experiment analysis results 
of SMOPD using the TPC-H benchmark. Finally we provide our 
conclusions and future work in Section 5. 

2. Related work 

The first well-known attributes clustering algorithm is called 
Bond Energy Algorithm [7]. This algorithm represents two 
different kinds of variables, row variable and column variable, 
with a two-dimension array. The relationship between each row 
variable and each column variable is represented by a numeric 
value. The tighter the relationship is, the bigger the numeric 
value will be. The algorithm divides the two dimension array 



into several fragments by permutating rows and columns so that 
the similar values can be put together in the same block. Each 
fragment then represents a clustering partition. This algorithm 
needs people’s judgment to tell the similarity of those numeric 
values and it has a high chance to create some overlaps among 
the fragment results. 

Another important attributes clustering algorithm was 
introduced after the Bond Energy Algorithm, which is Navathe’s 
Vertical Partitioning algorithm [8]. It was the first time that a 
vertical partitioning algorithm considers query frequency as a 
key factor that may impact the partitioning results; but this 
algorithm is only suitable for a small query set because of the 
O(2n) time complexity where n is the number of times the binary 
partitioning (which is proportional to the number of queries) is 
repeated.  

Later, after Navathe’s Vertical Partitioning algorithm, a new 
algorithm called Optimal Binary Partitioning algorithm was 
proposed [9]. This algorithm uses the branch and bound method 
[10] to construct a binary tree in which each node represents a 
query. The left branch of the node contains the attributes queried 
by this node and the right branch contains the remaining 
attributes. If all attributes of an unassigned query are contained 
in the fragment of the current node then this query needs not be 
considered as the child of the current node. This algorithm does 
reduce time complexity compared to Navathe’s Vertical 
Partitioning algorithm but it does not consider the impact of 
query frequency, and also its run time still grows exponentially 
with the number of queries. 

Some researchers use graph theory to do attribute clustering. 
One of such examples was introduced in [11] where vertices of a 
graph are used to represent the attributes and weighted edges are 
used to represent how often the two attributes connected by the 
edge appear in the same query. This algorithm traverses the 
graph and divides the graph into several sub fragments. In each 
fragment, which represents an attributes cluster, the edges have 
a similar weight. This algorithm may lead to inefficient partition 
results when some queries in the query set are used more often 
than other queries because it considers frequent queries to be the 
same as infrequent queries.  

A new idea of using the query optimizer of a database system 
for automating the physical database design was proposed in 
[13]. A query optimizer can estimate how well a query performs 
without really running the query and such ability gives 
researchers a new direction when they are working on physical 
database design. 

A more recent attribute clustering algorithm was introduced in 
[15], which uses the idea of performing clustering based on an 
attributes affinity matrix from [16]. This algorithm starts with a 
vertex V that satisfies the least degree of reflexivity and then 
finds a vertex with the max degree of symmetry among V’s 
neighbors. Once such a neighbor is found, both V and its 
neighbor are put in a subset. The neighbor would become the 
new V. The process would continue to search neighbors of the 
most recent V recursively until a cycle is formed or no vertex is 
left. After that, the fragments will be refined using a hit ratio 
function. The disadvantage of this technique is similar to the 
disadvantage of the algorithm proposed in [11] since infrequent 
queries are treated the same as frequent queries. 

The algorithms we have discussed so far are all static. The 
assumption is that the future workload must be very similar to 

the one used for generating the partitioning results. To the best 
of our knowledge, the only true online vertical database 
partitioning algorithm is AutoStore developed in 2011 [1]. This 
system has the ability to automatically collect queries and 
partition the data at checkpoint time intervals. When enough 
queries are collected, the system will update the old attributes 
affinity matrix and do permutation on this matrix to make the 
matrix have the best quality (the quality can be calculated using 
BEA [7]). Then AutoStore will do clustering on the new matrix 
and use the greedy method to find out the best way to cluster the 
attributes in the new matrix based on the estimated cost from the 
query optimizer. Once the best clustering solution is found, the 
costs of building the new partitions and the estimated benefit 
brought by the new partitions will be calculated separately. If 
the benefit is larger, the re-partitioning action will be triggered. 
Unfortunately this algorithm has several problems. The first one 
is that the authors did not give any clue of how many queries (in 
the article this number is called CheckpointSize) we need to 
collect. The second problem, which is a very serious one, is that 
this algorithm will run re-partitioning every time the 
CheckpointSize queries are collected no matter what 
performance trend it has at that time. As we know re-
partitioning is very expensive and should not be run too often. 
Our SMOPD introduced in the next section can solve both of the 
problems. 

We have discussed many existing vertical database partitioning 
algorithms but only [1] is dynamic. Some other researchers 
introduced some algorithms that only work for specific cases, 
such as a recent partitioning system called Schism, which was 
developed by Curinoet al. [21]. The main idea of their work is 
similar to the one in [11]. They use a graph to represent a 
database and query set where tuples are represented by nodes 
and queries are represented by edges. The system tries to 
minimize the weights of edges, i.e., the system tries to minimize 
the multi-sited queries. A limitation of their work is that the 
system is designed only for short-running OLTP queries. This 
means the queries only access very few tuples and attributes. For 
large and complex queries, their system might lose accuracy, 
that is the result provided might be even worse since complex 
queries (like OLAP queries) may have a lot of nested joins and 
access many sites.  

3. Auto Online Database Partitioner 

In this section, we present our SMOPD system, a special vertical 
database partitioning system which is designed with an online 
approach and has the ability to dynamically make the re-
partitioning decision based on the statistic data collected from 
system statistic views. This system only partitions the database 
tables that need re-partitioning. For the tables the current 
partitioning results of which still work well, the system can filter 
them out and does not consider them for re-partitioning. This 
technique can save a lot of time since calculating partitioning 
result candidates is time-consuming.  

In SMOPD there are three major components: query collector, 
statistics analyzer and database cluster, which we introduce in 
the following sections. As SMOPD uses our AutoClust 
algorithm [3] [4] to perform vertical partitioning for a database 
table once it decides that the current partitioning solution for that 
table is no longer good, we first briefly describe how AutoClust 
works before presenting the functionality of each component of 
our system.  Interested readers are referred to [3] [4] for details 
of AutoClust. 
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the DBA has no idea of how the future workload will look like 
and what the frequency distribution of each query will be. After 
filtering the less important queries out, finally we will get a 
query set QS which can be passed to the next component to do 
statistics analysis. 

3.3. Statistics Analyzer 

Once the query set QS is passed to the second component, 
Statistics Analyzer, this component will separate the QS into 
two sub sets, S0 and S1. S1contains all the physical read mainly 
queries and S0 contains all the logical read mainly queries. S1 is 
the set we will use to determine the query performance trend as 
database partitioning might impact it. 

In order to make the next component, Database Cluster, 
understand the query easily, the Statistic Analyzer will simplify 

each query, a process that we call query simplification. During 
this process, each query will be transformed into a simple format 
which contains only the original database tables and their 
attributes accessed by the query. 

Once the simplification work is done, an attribute usage matrix 
is built for each original database table as done in AutoClust [3] 
[4]. Each row of the attribute usage matrix represents the 
attributes that are accessed by the corresponding query and the 
percentage the query takes in the whole query set. Then the 
query optimizer will estimate the cost for each type of query 
and, then a new estimated cost is generated by calculating the 
average estimated cost for all types of queries in the attribute 
usage matrix. These two steps are discussed in detail in our 
papers on AutoClust [3] [4]. If a database table’s new estimated 
cost  which  is  generated  based  on  the  new query set is bigger  
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Input: 
1. Database tables T 
2. Queries running on DB 
3. Current estimate cost set for each table in T- Cold 
4. Physical read ratio threshold of a query- r 
5. The ratio threshold of number of queries that satisfies r- fn 
6. Query frequency threshold- ft (a query must occur at least ft percent in the whole query set) 
7. Confidence interval- ܿఈ 
8. Confidence level- α 

Output: 
Partitioning results for each database table in T when this database table needs to be repartitioned 
Step 1: estimate the number of queries N that need to be read ܰ = ఈଶݖ ∗ ݂݊(1 − ݂݊)ܿఈଶ  

Step 2: collect queries 
Initialize two empty set s0, s1 and an integer parameter k = 0; 

While 
௦ଵ.௦௭௜௘௞∗ே < ݂݊ or k = 0 do 

  Read N queries and put them in the set QS 
  For each query qi in QS 
    Get ri of qi; 
    If ri<r then 
      Put qi in s0; 
      Remove qi from QS; 
    End if 
    Else 
      Put qi in s1; 
      Remove qi from QS; 
    End else 
  End for 
k++; 
End do 
Step 3: simplify and filter queries in s1 
Simplify queries in s1 and calculate frequency for each type of query, put each type of query with its frequency in a new set FQS; 
For each list FQS[i] in FQS 
  If FQS[i].frequency <ft then 
    Remove FQS[i] from FQS; 
  End if 
  Else 
    Extract all database tables’ name in FQS[i].query and replace them with original tables’ names and put each original table in set T; 
  End else 
End for 
Step 4: evaluate the performance of current partitions 
For each database table Ti in T 
  Construct attributes usage matrix Mi using FQS; 
  Get the estimate cost Cnew for Ti using Mi; 
  If Cnew<= Cold[i] then 
    Remove Ti from T 
  End if 
End for 
Step 5: run AutoClust using T and FQS 

Figure 1. The SMOPD algorithm 



than its old estimated cost which was generated from the old 
query set during the previous partitioning process, then it means 
that the current partitioning solution’s performance is degrading 
and a new database partitioning solution should be derived for 
this database table. Then the Statistics Analyzer will save this 
database table in a table set T. The Statistics Analyzer examines 
all the database tables included in the set S1 so that it can find 
out all the database tables of which the current partitioning 
solution does not perform as well as before and save them in T 
which will be passed to the next component, Database Cluster, 
to do re-partitioning. 

3.4. Database Cluster 

The third component, Database Cluster, runs our AutoClust 
algorithm [3] [4]. This component uses T and S1 as input to 
generate multiple candidate database partitioning solutions and 
uses the query optimizer to select the best solution for each 
database table.  

The whole algorithm of SMOPD is shown in Figure 1. First the 
Query Collector reads the pre-defined parameters, which are ca, 
a and fn, from the configuration file to calculate the minimum 
number of queries to be collected (lines 1-2). After that it starts 
to read the queries from the database system views that contain 
the detail information of the queries executed and puts all 
queries in a set QS (lines 3-6). When QS contains enough 
queries, the Statistics Analyzer starts to run and puts all the 
physical read mainly queries in QS into a set S1 (lines 7-19). In 
order to make the Database Cluster component understand the 
queries in S1,  the Statistics Analyzer  creates a set FQS  
(Filtered Query Set) containing the simplified format of each 
query in S1 and replaces the sub partition database tables with 
the original database tables (lines 20-21, 26-28). During this 
process the Statistics Analyzer reads the parameter ft from the 
configuration file and any query with a frequency less than ft is 
removed from FQS (lines 22-25, 29). Now FQS contains all the 
queries that will heavily impact the partitioning solution, so the 
Statistics Analyzer calculates their new estimated cost and 
compares this cost with the old estimated cost read from Cold in 
the configuration file (lines 30-37). If the new estimated cost is 
bigger than the old one, the original database table 
corresponding to the old cost needs to be re-partitioned and this 
database table will be kept in set T; otherwise the database table 
will be removed from further consideration for re-partitioning. If 
T is not empty then the Database Cluster component knows that 
some tables must be re-partitioned;  so it starts to run AutoClust 
on each table in T to find a better partitioning solution to replace 
the current one (line 38). 

4. Experiment result analysis 

We conduct experiments to test the performance of SMOPD 
using the TPC-H benchmark [20]. Since the database tables, 
NATION and REGION, are very small (5-25 rows), we 
eliminate them from our experiments. We use the average query 
estimated cost as the metric to evaluate the performance. We 
analyze our system’s performance by comparing the query 
estimated cost of the new database partitioning solution with the 
query estimated cost of the old database partitioning solution. 
Below we present our experiment model and results. 

 

 

Table 1. Configuration file parameters 

Name Type Value Range Default Value ݎ Dynamic 10%-30% 20% ௡݂ Dynamic 20%-50% 40% ௧݂ Static N/A 10%*Avg_Freq ܿఈ Static N/A 1% ߙ Static N/A 95% 

4.1. Experiment Model 

Before we conduct experiments we need to set up all the 
parameters in a configuration file which will be read every time 
when SMOPD is running. Table 1 shows all parameters with 
their values. For each dynamic parameter, when we study its 
impacts on the system performance, we vary its value within a 
range and keep other dynamic parameters at their default values. 

We test our system using a computer with a processor of Intel 
Core 2 Quad Q8400, RAM of 3 GB and hard disk of 300 GB, 
running on Windows 7. The database system is Oracle 11g EX 
Edition. The program is coded in Java. 

In order to test how the re-partitioning process performs, we 
need to partition the original database tables once at the 
beginning. We randomly generate a frequency for each query in 
the TPC-H benchmark.  Totally we run the TPC-H queries 
10,000 times; so the run time of each query can be calculated by 
using its frequency. Then we randomly select 60% of the query 
types from all TPC-H query types to run AutoClust once to get 
the first partitioning solution. 

AutoClust is based on the closed item sets mining. The output of 
the closed item sets is determined by the attribute usage table. If 
there is no change in the attributes usage table then the output of 
the closed item sets will keep unchanged. So we have to use a 
new attribute usage table for each original TPC-H database 
table. When we run SMOPD we randomly select 60% of the 
TPC-H query types (this ensures that we have changes in query 
types) and generate a random frequency for each query selected 
(this ensures that we have a change in query frequency). 

4.2. Impacts of ࢔ࢌ 

According to Table 1 ௡݂ changes from 20% to 50%.the 
experiment results show that the percentage of unnecessary runs 
(i.e. SMOPD cannot find a better partitioning solution) is small, 
which happens only 1 out of 18 runs. The system was able to 
correctly identify all cases when no repartitioning is needed. 
Overall our system offers good performance improvement 
through its automatic decision on re-partitioning.  The average 
performance improvement by our system over all values of fn is 
shown in Figure 2. 

Figure 2. Average performance improvement based on 
estimated query cost over all values of fn 



4.3. Impacts of ࢘ 

The parameter r changes from 10% to 30% according to Table 
1.The experiment results show that our system performed 18 
cost comparisons and 10 re-partitioning actions. Out of 10 re-
partitioning actions, 8 actions are correct, and the new solutions 
provided by our system are always the best ones based on the 
current query sets. For the 8 cases where SMOPD decides that 
re-partitioning is not needed, 7 cases are correct. The average 
performance improvement of our system over all values of r 
tested for each TPC-H benchmark database table is shown in 
Figure 3. 

Figure 3. Average performance improvement based on 
estimated query cost over all values of r 

5. Conclusions 

In this paper we presented SMOPD a fully automatic vertical 
database partitioning system.  Its goal is to locate those database 
tables the average response time for a query set running on 
which is getting bigger (measured by the estimated cost of the 
query optimizer) according to the current partitioning solution 
and propose the best new partitioning solution from all solutions 
it generates. The whole process is fully automated with an 
online approach. From the experiments using the TPC-H 
benchmark, we can see that our system can automatically split 
database tables into two groups: good performance group and 
bad performance group. For each database table in the bad 
performance group, the system tries to re-partition the database 
tables using the queries it has collected. If the system determines 
that a better database partitioning solution exists, then it rebuilds 
the partition for this database table automatically; otherwise, it 
keeps using the current database partitioning solution. Our 
algorithm currently works for one single machine only.  Our 
future work is to extend our system to cluster computers so that 
each computing node in the cluster computers could 
automatically change the partitions for the necessary database 
tables based on the query set executed on that node, and during 
the re-partitioning process other computing nodes should be able 
to work normally. 
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