
Self-Managing Online Partitioner for Databases
(SMOPD) – A Vertical Database Partitioning System

with a Fully Automatic Online Approach
Liangzhe Li

School of Computer Science
University of Oklahoma

Norman, OK 73019, USA
lzli@ou.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73019, USA
ggruenwald@ou.edu

ABSTRACT
A key factor of measuring database performance is query
response time, which is dominated by I/O time. Database
partitioning is among techniques that can help users reduce the
I/O time significantly. However, how to efficiently partition
tables in a database is not an easy problem, especially when we
want to have this partitioning task done automatically by the
system itself. This paper introduces an algorithm called Self-
Managing Online Partitioner for Databases (SMOPD) in vertical
partitioning based on closed item sets mining from a query set
and system statistic information mined from system statistic
views. This algorithm can dynamically monitor the database
performance using user-configured parameters and
automatically detect the performance trend so that it can decide
when to perform a re-partitioning action without feedback from
DBAs. This algorithm can free DBAs from the heavy tasks of
keeping monitoring the system and struggling against the large
statistic tables. The paper also presents the experimental results
evaluating the performance of the algorithm using the TPC-H
benchmark.

1. Introduction

In recent years researchers have been paying more and more
attention to the development of self-managing database
algorithms which includes self-managing database indexing [22]
[19], self-managing database caching [18], self-managing
database partitioning [1], self-tuning database parameters [17],
etc. Some of those algorithms are fully automatic while others
are partially automatic (or semi-automatic). A fully automatic
algorithm does not need human interference for feedback when
the algorithm is running, while a semi-automatic algorithm does.
The disadvantage of a semi-automatic algorithm is that it relies
on the experience of the DBA. An experienced DBA means
more cost to an organization and is hard to be hired in market.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
IDEAS '13, October 09 - 11 2013, Barcelona, Spain
Copyright 2013 ACM 978-1-4503-2025-2/13/10…$15.00.
http://dx.doi.org/10.1145/2513591.2513649

That is why more and more researchers are trying to develop
fully automatic algorithms for self-managing DBMS [1] [23]
[24] [25]. These algorithms should have the ability to know
when the database performance is going down and how to tune
the database on one or more aspects to get better performance.
The algorithm we introduce in this paper is an algorithm that has
a fully automatic online approach and focuses on the vertical
database partitioning and re-partitioning problem.

Vertical database partitioning algorithms can be roughly
classified into two categories: optimizer-independent and
optimizer-integrated. For an optimizer-independent algorithm,
the query optimizer of a database system is not involved in the
algorithm, while for an optimizer-integrated algorithm, the
query optimizer is used to evaluate the candidate solutions when
the algorithm is running. Most previous research on database
partitioning design ([7] [8] [9] [11] [14]) belongs to the first
category. Our SMOPD belongs to the second category, which
largely uses the query optimizer as a black-box to perform the
optimization. The query optimizer performs the what-if calls [2]
to select a better execution plan which can be used to find out
the best possible partitioning solution. Those algorithms listed
above use a fixed workload to decide the partitioning results.
However, in many cases, the workload keeps changing; so it is
necessary to have a dynamic partitioning algorithm – an
algorithm that is able to monitor the database performance,
determine when a re-partitioning action is needed, and perform
re-partitioning accordingly.

In this paper we introduce SMOPD, which uses an online
approach to monitor the queries running on the database and
collects the statistic information from the system statistic views
so that it can detect the performance trend and make the re-
partitioning decision automatically. The remainder of this paper
is organized as follows. In Section 2 we review the related work
on database vertical partitioning. In Section 3 we introduce
SMOPD. In Section 4 we present the experiment analysis results
of SMOPD using the TPC-H benchmark. Finally we provide our
conclusions and future work in Section 5.

2. Related work

The first well-known attributes clustering algorithm is called
Bond Energy Algorithm [7]. This algorithm represents two
different kinds of variables, row variable and column variable,
with a two-dimension array. The relationship between each row
variable and each column variable is represented by a numeric
value. The tighter the relationship is, the bigger the numeric
value will be. The algorithm divides the two dimension array

into several fragments by permutating rows and columns so that
the similar values can be put together in the same block. Each
fragment then represents a clustering partition. This algorithm
needs people’s judgment to tell the similarity of those numeric
values and it has a high chance to create some overlaps among
the fragment results.

Another important attributes clustering algorithm was
introduced after the Bond Energy Algorithm, which is Navathe’s
Vertical Partitioning algorithm [8]. It was the first time that a
vertical partitioning algorithm considers query frequency as a
key factor that may impact the partitioning results; but this
algorithm is only suitable for a small query set because of the
O(2n) time complexity where n is the number of times the binary
partitioning (which is proportional to the number of queries) is
repeated.

Later, after Navathe’s Vertical Partitioning algorithm, a new
algorithm called Optimal Binary Partitioning algorithm was
proposed [9]. This algorithm uses the branch and bound method
[10] to construct a binary tree in which each node represents a
query. The left branch of the node contains the attributes queried
by this node and the right branch contains the remaining
attributes. If all attributes of an unassigned query are contained
in the fragment of the current node then this query needs not be
considered as the child of the current node. This algorithm does
reduce time complexity compared to Navathe’s Vertical
Partitioning algorithm but it does not consider the impact of
query frequency, and also its run time still grows exponentially
with the number of queries.

Some researchers use graph theory to do attribute clustering.
One of such examples was introduced in [11] where vertices of a
graph are used to represent the attributes and weighted edges are
used to represent how often the two attributes connected by the
edge appear in the same query. This algorithm traverses the
graph and divides the graph into several sub fragments. In each
fragment, which represents an attributes cluster, the edges have
a similar weight. This algorithm may lead to inefficient partition
results when some queries in the query set are used more often
than other queries because it considers frequent queries to be the
same as infrequent queries.

A new idea of using the query optimizer of a database system
for automating the physical database design was proposed in
[13]. A query optimizer can estimate how well a query performs
without really running the query and such ability gives
researchers a new direction when they are working on physical
database design.

A more recent attribute clustering algorithm was introduced in
[15], which uses the idea of performing clustering based on an
attributes affinity matrix from [16]. This algorithm starts with a
vertex V that satisfies the least degree of reflexivity and then
finds a vertex with the max degree of symmetry among V’s
neighbors. Once such a neighbor is found, both V and its
neighbor are put in a subset. The neighbor would become the
new V. The process would continue to search neighbors of the
most recent V recursively until a cycle is formed or no vertex is
left. After that, the fragments will be refined using a hit ratio
function. The disadvantage of this technique is similar to the
disadvantage of the algorithm proposed in [11] since infrequent
queries are treated the same as frequent queries.

The algorithms we have discussed so far are all static. The
assumption is that the future workload must be very similar to

the one used for generating the partitioning results. To the best
of our knowledge, the only true online vertical database
partitioning algorithm is AutoStore developed in 2011 [1]. This
system has the ability to automatically collect queries and
partition the data at checkpoint time intervals. When enough
queries are collected, the system will update the old attributes
affinity matrix and do permutation on this matrix to make the
matrix have the best quality (the quality can be calculated using
BEA [7]). Then AutoStore will do clustering on the new matrix
and use the greedy method to find out the best way to cluster the
attributes in the new matrix based on the estimated cost from the
query optimizer. Once the best clustering solution is found, the
costs of building the new partitions and the estimated benefit
brought by the new partitions will be calculated separately. If
the benefit is larger, the re-partitioning action will be triggered.
Unfortunately this algorithm has several problems. The first one
is that the authors did not give any clue of how many queries (in
the article this number is called CheckpointSize) we need to
collect. The second problem, which is a very serious one, is that
this algorithm will run re-partitioning every time the
CheckpointSize queries are collected no matter what
performance trend it has at that time. As we know re-
partitioning is very expensive and should not be run too often.
Our SMOPD introduced in the next section can solve both of the
problems.

We have discussed many existing vertical database partitioning
algorithms but only [1] is dynamic. Some other researchers
introduced some algorithms that only work for specific cases,
such as a recent partitioning system called Schism, which was
developed by Curinoet al. [21]. The main idea of their work is
similar to the one in [11]. They use a graph to represent a
database and query set where tuples are represented by nodes
and queries are represented by edges. The system tries to
minimize the weights of edges, i.e., the system tries to minimize
the multi-sited queries. A limitation of their work is that the
system is designed only for short-running OLTP queries. This
means the queries only access very few tuples and attributes. For
large and complex queries, their system might lose accuracy,
that is the result provided might be even worse since complex
queries (like OLAP queries) may have a lot of nested joins and
access many sites.

3. Auto Online Database Partitioner

In this section, we present our SMOPD system, a special vertical
database partitioning system which is designed with an online
approach and has the ability to dynamically make the re-
partitioning decision based on the statistic data collected from
system statistic views. This system only partitions the database
tables that need re-partitioning. For the tables the current
partitioning results of which still work well, the system can filter
them out and does not consider them for re-partitioning. This
technique can save a lot of time since calculating partitioning
result candidates is time-consuming.

In SMOPD there are three major components: query collector,
statistics analyzer and database cluster, which we introduce in
the following sections. As SMOPD uses our AutoClust
algorithm [3] [4] to perform vertical partitioning for a database
table once it decides that the current partitioning solution for that
table is no longer good, we first briefly describe how AutoClust
works before presenting the functionality of each component of
our system. Interested readers are referred to [3] [4] for details
of AutoClust.

3

In
T
a
w
s
c
fr
a
fr
th
3
ta
a
C
In
r
S
d
a
f
s
c
c

3

W
(
h
h
s
in
s
th
th
q
q
c

L

b
w
c
p
s
q
e
th

F
o
u

c݊

T
b

3.1. AutoC

n this section, w
There are five st
attribute usage m
which query acce
sets (CIS) [5] o
closed if it has n
fraction of transa
as a subset [5].
frequently by the
he same cluster

3, augmentations
able to each ex

augmented close
CIS and the prim
n Step 4 an e
epresents a can

Step 5, the soluti
database system
and the solution
final attribute c
solution. This
component of ou
components of ou

3.2. Query

We know that
logical I/Os) is

hard disk (physic
help the database
significantly but
ntroduce the fir

system which is
he physical read
his query as a ph

query; otherwise
query and use 0
can be transferred

Let ௡݂ = ௤భା௤మା௤௡
be the second c
whereݍ i is the it
collected. This
percentage of ph
set we have. Onl
queries is larger
enough queries c
he statistics anal

From the discuss
of a workload co
use either 1 or 0݊ ൒ 50, ݊ ௡݂ ൒ 1
can be rounded w

The possibility th
be represented in

݌ = ௡݂ േ

lust

we summarize the
teps in our Aut
matrix is built b
esses which attri
of attributes are
o superset havin
actions in a data
CIS can tell us

e same query. W
(partition) toget

s to add the prim
xisting closed i
ed item set (AC
mary key. Then w
execution tree

ndidate attribute
ions are submitt
that will proces

n with the best e
clustering (or
algorithm is u
ur SMOPD syst
ur system one by

Collector

information ret
much faster tha

cal I/Os). An at
e system improv
t not the logic
rst configuration
the physical rea

d ratio of a que
hysical read mai
 we consider thi
 to mark this q
d to a set contain௤యା⋯ା௤೙௡ where ݍ௜
onfiguration par
th query and n

parameter rep
hysical read mai
ly if the percent
than the thresho

collected by the
lyzer component

sion above we ca
ould be regarded
0 to represent a 0, ݊(1 − ௡݂) ൒
with a normal dis

hat a query is a
n the following f

ܿఈ݁ݎ݄݁ݓ ൞ ܿఈ
௡݂ =

e key ideas of A
oClust algorithm
based on a quer
ibutes. In Step 2
e mined. An ite
ng the same supp
a set where the
s which attribut

We want to keep s
ther as much as p

mary key of the o
item set are do

CIS) which is a
we will remove
is generated w
clustering solu

ted to the query
s the queries for
estimated cost i
vertical databa
used in the d
tem. Now we i
y one.

trieval from the
an information
ttribute clusterin
ve the physical I
cal I/O perform
n parameter, ,ݎ
ad ratio threshol
ry is bigger tha
inly query and u
is query as a log

query. Then the
ning either 1’s o

௜ = ൜1 ݂݅ܽܿ݅݃݋݈݂݅ 0ܿ݅ݏݕ݄݌
rameter we use
is the total num

presents the th
inly queries in t
tage of the phys
old ௡݂ , we can s

e query collector
t.

an see that the qu
d as a binomial d
query. Accordin10 then a binom

stribution ܰ(݊݌,
physical read m

format: = =ఈට௙೙(ଵି௙೙)௡ݖ ௤భା௤మା௤యା⋯ା௤೙௡

AutoClust [3] [4]
m. In Step 1, an
ry set indicating
, the closed item

em set is called
port which is the
item set appears
tes are accessed
such attributes in
possible. In Step
original database
one to form the

combination of
duplicate ACIS

where each leaf
ution. Finally, in

optimizer of the
r cost estimation
is chosen as the

ase partitioning)
database cluster
ntroduce all the

e main memory
retrieval from a

ng technique can
I/O performance

mance. Here we
we use for our
ld of a query. If

an r we consider
se 1 to mark this

gical read mainly
query workload

or 0’s. ݈ܿܽݕ݈݊݅ܽ݉݀ܽ݁ݎ݈ܽݕ݈݊݅ܽ݉݀ܽ݁ݎ ൠ
 for our system
mber of queries

hreshold of the
the whole query
ical read mainly

say that we have
r component for

uery distribution
distribution if we
ng to [12], when
mial distribution, ඥ݊1)݌ − .((݌

mainly query can

೙ൢ (1)

.
n
g

m
d
e
s
d
n
p
e
e
f
.
f
n
e
n
e
)
r
e

y
a
n
e
e
r
f
r
s
y
d

ൠ

m
s
e
y
y
e
r

n
e
n
n

n

where
config
which
repres
define
formu

Now
that th
the th
statist
Equat

Once
querie
occur
query
equal
filter
define

The f
based
each
are 1
TPC-

is
ଵ଴଴ଵଷ

frequ
config
struct
impor
mean

The
autom
detec
classi
algori
one i
the sm
is rig
bigge
doubl
small
query
than t
since
use le
frequ
execu
as an
determ
accor

Wher
query
accor
greate
critica
is det

e ܿఈ is the con
guration parame
h is the fourth c
sents the con
ed ܿఈ, ఈܽ݊݀ݖ ௡݂ ,
ula: ݊
we know that at
he percentage o
hreshold ௡݂ . In
tics we need t
tion (2).

we collect n
es in this query
r rarely. So we
y frequency thres
l to ௧݂, we consid

it out from the
e this parameter

first way is to m
d on the average
run we randoml
3 different type

-H benchmark. %ଷ = 7.7% . We

ency, so ௧݂ =
guration way is
ture of the wor
rtance for each

ns the support or

second way o
matically calcula
tion algorithm. I
ic Grubbs’ outli
ithm, there are th
s left-sided dete
mallest value to

ght-sided detectio
est value to see w
le-sided detectio
lest and biggest v
y set we conside
the average que
such kind of qu

eft-sided detecti
ency, it means t

uted very often.
n outlier query
mine whether a
rding to the follo݃
re is the aver
y frequency and
rding to query fr
er than the critic
al value statistic
tected. This conf

nfidence interva
eter of our system
configuration pa

nfidence level , we can calcul

݊ = ௙೙(ଵି௙೙)ൈ௭మഀ௖మഀ

t least we need to
f the physical re

n other words,
to collect at le

queries we ne
y set. The outli

define the last
shold. If a query
der such query a
e query set. Be
.

manually give an
e query frequen
ly select 60% of
es of queries ou
The average qu

e define ௧݂ as = 10% ∗ 7.7% =
s easy to use w
rkload and alrea
type of query.
frequency of a q

of defining ௧݂
ate its value u
In our system, f
ier test (GOT)
hree approaches
ection in which
see whether it i
on in which the
whether it is an
on in which the
values to see wh
er a query with

ery frequency to
uery occurs very
ion in our case.
that this query is
This kind of qu
. The test stati

a sample is an o
owing formula: = ௫̅௦ − ௫೘೔೙௦

rage query freq
s is the standard

requencies. If th
cal value which c
cal table [6], the
figuration metho

al of ݌ and is
m, and ݖఈ is a fu
arameter of the

of ݌. Since w
late n using the

 (2)

o collect n queri
ead mainly quer
in order to ha

ast n queries a

ed to consider
iner queries are
t parameter ௧݂ w
y’s frequency is
as an outlier que

elow we give tw

n exact threshold
cy. In our expe
f the TPC-H que
ut of 21 query t
uery frequency

10% of the av= 0.77% . Th
when the DBA
ady has an idea
The importance
query in the wor

 is to have
using some spec
for instance, we
algorithm [6]. I

s to find an outlie
the algorithm o

s an outlier; the
e algorithm only
outlier; and the
 algorithm chec
hether they are o

a much smalle
be a possible o

y rarely. Hence
If a query has

s very important
uery should not
istics g which
outlier or not is

 (3)

quency, xmin is t
d deviation of th

he resulting test
can be found in
en it means an o
od of ௧݂ is good t

s the third
unction of ߙ
system that

we already
e following

ies to ensure
ries is above
ave enough
as given in

the outlier
e those that
which is the

less than or
ery and will
wo ways to

d value to ௧݂
riments, for
eries, which
types in the
(Avg_Freq)

veragequery

he manual
knows the

a about the
e of a query
rkload.

the system
cific outlier
can use the

In the GOT
er. The first
only checks
 second one

y checks the
third one is

cks both the
outliers. In a
er frequency
outlier query

we need to
a very high

t and will be
be regarded
is used to

s calculated

the minimal
he workload
statistic g is
the Grubbs’

outlier query
to use when

the DBA has no idea of how the future workload will look like
and what the frequency distribution of each query will be. After
filtering the less important queries out, finally we will get a
query set QS which can be passed to the next component to do
statistics analysis.

3.3. Statistics Analyzer

Once the query set QS is passed to the second component,
Statistics Analyzer, this component will separate the QS into
two sub sets, S0 and S1. S1contains all the physical read mainly
queries and S0 contains all the logical read mainly queries. S1 is
the set we will use to determine the query performance trend as
database partitioning might impact it.

In order to make the next component, Database Cluster,
understand the query easily, the Statistic Analyzer will simplify

each query, a process that we call query simplification. During
this process, each query will be transformed into a simple format
which contains only the original database tables and their
attributes accessed by the query.

Once the simplification work is done, an attribute usage matrix
is built for each original database table as done in AutoClust [3]
[4]. Each row of the attribute usage matrix represents the
attributes that are accessed by the corresponding query and the
percentage the query takes in the whole query set. Then the
query optimizer will estimate the cost for each type of query
and, then a new estimated cost is generated by calculating the
average estimated cost for all types of queries in the attribute
usage matrix. These two steps are discussed in detail in our
papers on AutoClust [3] [4]. If a database table’s new estimated
cost which is generated based on the new query set is bigger

1

2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Input:
1. Database tables T
2. Queries running on DB
3. Current estimate cost set for each table in T- Cold
4. Physical read ratio threshold of a query- r
5. The ratio threshold of number of queries that satisfies r- fn
6. Query frequency threshold- ft (a query must occur at least ft percent in the whole query set)
7. Confidence interval- ܿఈ
8. Confidence level- α

Output:
Partitioning results for each database table in T when this database table needs to be repartitioned
Step 1: estimate the number of queries N that need to be read ܰ = ఈଶݖ ∗ ݂݊(1 − ݂݊)ܿఈଶ

Step 2: collect queries
Initialize two empty set s0, s1 and an integer parameter k = 0;

While
௦ଵ.௦௭௜௘௞∗ே < ݂݊ or k = 0 do

 Read N queries and put them in the set QS
 For each query qi in QS
 Get ri of qi;
 If ri<r then
 Put qi in s0;
 Remove qi from QS;
 End if
 Else
 Put qi in s1;
 Remove qi from QS;
 End else
 End for
k++;
End do
Step 3: simplify and filter queries in s1
Simplify queries in s1 and calculate frequency for each type of query, put each type of query with its frequency in a new set FQS;
For each list FQS[i] in FQS
 If FQS[i].frequency <ft then
 Remove FQS[i] from FQS;
 End if
 Else
 Extract all database tables’ name in FQS[i].query and replace them with original tables’ names and put each original table in set T;
 End else
End for
Step 4: evaluate the performance of current partitions
For each database table Ti in T
 Construct attributes usage matrix Mi using FQS;
 Get the estimate cost Cnew for Ti using Mi;
 If Cnew<= Cold[i] then
 Remove Ti from T
 End if
End for
Step 5: run AutoClust using T and FQS

Figure 1. The SMOPD algorithm

than its old estimated cost which was generated from the old
query set during the previous partitioning process, then it means
that the current partitioning solution’s performance is degrading
and a new database partitioning solution should be derived for
this database table. Then the Statistics Analyzer will save this
database table in a table set T. The Statistics Analyzer examines
all the database tables included in the set S1 so that it can find
out all the database tables of which the current partitioning
solution does not perform as well as before and save them in T
which will be passed to the next component, Database Cluster,
to do re-partitioning.

3.4. Database Cluster

The third component, Database Cluster, runs our AutoClust
algorithm [3] [4]. This component uses T and S1 as input to
generate multiple candidate database partitioning solutions and
uses the query optimizer to select the best solution for each
database table.

The whole algorithm of SMOPD is shown in Figure 1. First the
Query Collector reads the pre-defined parameters, which are ca,
a and fn, from the configuration file to calculate the minimum
number of queries to be collected (lines 1-2). After that it starts
to read the queries from the database system views that contain
the detail information of the queries executed and puts all
queries in a set QS (lines 3-6). When QS contains enough
queries, the Statistics Analyzer starts to run and puts all the
physical read mainly queries in QS into a set S1 (lines 7-19). In
order to make the Database Cluster component understand the
queries in S1, the Statistics Analyzer creates a set FQS
(Filtered Query Set) containing the simplified format of each
query in S1 and replaces the sub partition database tables with
the original database tables (lines 20-21, 26-28). During this
process the Statistics Analyzer reads the parameter ft from the
configuration file and any query with a frequency less than ft is
removed from FQS (lines 22-25, 29). Now FQS contains all the
queries that will heavily impact the partitioning solution, so the
Statistics Analyzer calculates their new estimated cost and
compares this cost with the old estimated cost read from Cold in
the configuration file (lines 30-37). If the new estimated cost is
bigger than the old one, the original database table
corresponding to the old cost needs to be re-partitioned and this
database table will be kept in set T; otherwise the database table
will be removed from further consideration for re-partitioning. If
T is not empty then the Database Cluster component knows that
some tables must be re-partitioned; so it starts to run AutoClust
on each table in T to find a better partitioning solution to replace
the current one (line 38).

4. Experiment result analysis

We conduct experiments to test the performance of SMOPD
using the TPC-H benchmark [20]. Since the database tables,
NATION and REGION, are very small (5-25 rows), we
eliminate them from our experiments. We use the average query
estimated cost as the metric to evaluate the performance. We
analyze our system’s performance by comparing the query
estimated cost of the new database partitioning solution with the
query estimated cost of the old database partitioning solution.
Below we present our experiment model and results.

Table 1. Configuration file parameters

Name Type Value Range Default Value ݎ Dynamic 10%-30% 20% ௡݂ Dynamic 20%-50% 40% ௧݂ Static N/A 10%*Avg_Freq ܿఈ Static N/A 1% ߙ Static N/A 95%

4.1. Experiment Model

Before we conduct experiments we need to set up all the
parameters in a configuration file which will be read every time
when SMOPD is running. Table 1 shows all parameters with
their values. For each dynamic parameter, when we study its
impacts on the system performance, we vary its value within a
range and keep other dynamic parameters at their default values.

We test our system using a computer with a processor of Intel
Core 2 Quad Q8400, RAM of 3 GB and hard disk of 300 GB,
running on Windows 7. The database system is Oracle 11g EX
Edition. The program is coded in Java.

In order to test how the re-partitioning process performs, we
need to partition the original database tables once at the
beginning. We randomly generate a frequency for each query in
the TPC-H benchmark. Totally we run the TPC-H queries
10,000 times; so the run time of each query can be calculated by
using its frequency. Then we randomly select 60% of the query
types from all TPC-H query types to run AutoClust once to get
the first partitioning solution.

AutoClust is based on the closed item sets mining. The output of
the closed item sets is determined by the attribute usage table. If
there is no change in the attributes usage table then the output of
the closed item sets will keep unchanged. So we have to use a
new attribute usage table for each original TPC-H database
table. When we run SMOPD we randomly select 60% of the
TPC-H query types (this ensures that we have changes in query
types) and generate a random frequency for each query selected
(this ensures that we have a change in query frequency).

4.2. Impacts of ࢔ࢌ

According to Table 1 ௡݂ changes from 20% to 50%.the
experiment results show that the percentage of unnecessary runs
(i.e. SMOPD cannot find a better partitioning solution) is small,
which happens only 1 out of 18 runs. The system was able to
correctly identify all cases when no repartitioning is needed.
Overall our system offers good performance improvement
through its automatic decision on re-partitioning. The average
performance improvement by our system over all values of fn is
shown in Figure 2.

Figure 2. Average performance improvement based on
estimated query cost over all values of fn

4.3. Impacts of ࢘

The parameter r changes from 10% to 30% according to Table
1.The experiment results show that our system performed 18
cost comparisons and 10 re-partitioning actions. Out of 10 re-
partitioning actions, 8 actions are correct, and the new solutions
provided by our system are always the best ones based on the
current query sets. For the 8 cases where SMOPD decides that
re-partitioning is not needed, 7 cases are correct. The average
performance improvement of our system over all values of r
tested for each TPC-H benchmark database table is shown in
Figure 3.

Figure 3. Average performance improvement based on
estimated query cost over all values of r

5. Conclusions

In this paper we presented SMOPD a fully automatic vertical
database partitioning system. Its goal is to locate those database
tables the average response time for a query set running on
which is getting bigger (measured by the estimated cost of the
query optimizer) according to the current partitioning solution
and propose the best new partitioning solution from all solutions
it generates. The whole process is fully automated with an
online approach. From the experiments using the TPC-H
benchmark, we can see that our system can automatically split
database tables into two groups: good performance group and
bad performance group. For each database table in the bad
performance group, the system tries to re-partition the database
tables using the queries it has collected. If the system determines
that a better database partitioning solution exists, then it rebuilds
the partition for this database table automatically; otherwise, it
keeps using the current database partitioning solution. Our
algorithm currently works for one single machine only. Our
future work is to extend our system to cluster computers so that
each computing node in the cluster computers could
automatically change the partitions for the necessary database
tables based on the query set executed on that node, and during
the re-partitioning process other computing nodes should be able
to work normally.

6. Acknowledgement

This work is partially supported by National Science Foundation
grant No. 0954310.

References
[1] Jindal, A., and Dittrich, J., Relax and Let the Database do the
Partitioning Online. In BIRTE, 2011.

[2] Rao, J., Zhang, C., Megiddo, N., and Lohman, G. M., Automating
Physical Database Design in a Parallel Database. In SIGMOD, page
558-569, 2002.
[3] Guinepain, S. and Gruenwald, L., Using Cluster Computing to
Support Automatic and Dynamic Database Clustering, IWAPT, 2008.
[4] Li, L., and Gruenwald, L., Autonomous Database Partitioning Using
Data Mining on Single Computers and Cluster Computers, IDEAS12,
August 2012.
[5] Pasquier, N., Bastidem, Y., Taouil, R. and Lakhal, L., Efficient
Mining of Association Rules Using Closed Item set Lattices,
Information Systems, Vol. 24, No. 1, 1999.
[6] Frank, E. G., Procedures for Detecting Outlying Observations in
Samples, Technometrics, Vol. 11, No. 1, pp. 1-21, February 1969.
[7] McCormick, W. T. Schweitzer P.J., and White T.W., Problem
Decomposition and Data Reorganization by A Clustering Technique,
Operation Research, Vol. 20, No. 5, September 1972.
[8] Navathe, S., Ceri, S., Wierhold, G. and Dou, J., Vertical Partitioning
Algorithms for Database Design, ACM Transactions on Database
Systems, Vol. 9, No. 4, December 1984.
[9] Wesley W. Chu and I. Ieong, A Transaction-Based Approach to
Vertical Partitioning for Relational Database Systems, IEEE
Transactions on Software Engineering, Vol. 19, No. 8, August 1993.
[10] Horowitz, E. and Sahni, S., Fundamentals of Computer Algorithms,
Rockville, MD: Computer Science Press, 1978.
[11] Navathe, S. and Ra M., Vertical Partitioning for Database Design:
A Graph Algorithm, ACM SIGMOD International Conference on
Management of Data, 1989.
[12] Berthuet R., Cours de Statistiques, CUST, Clermont-Ferrand,
France, 1994.
[13] Papadomanolakis, S., Dash, D. and Ailamaki, A., Efficient Use of
the Query Optimizer for Automated Physical Design, VLDB 2007,
Proceedings of the 33rd International Conference Very Large Databases,
September 2007.
[14] Rodriguez, L. and Li, X., A Dynamic Vertical Partitioning
Approach for Distributed Database System, Systems, Man, and
Cybernetics (SMC), IEEE International Conference 2011.
[15] Abuelyaman, E., S., An Optimized Scheme for Vertical Partitioning
of a Distributed Database, IJCSNS International Journal of Computer
Science and Network Security, Vol.8, No.1, 2008.
[16] Navathe, S., Ceri, S., Wierhold, G. and Dou, J., Vertical
Partitioning Algorithms for Database Design, ACM Transactions on
Database Systems, Vol. 9, No. 4, December 1984.
[17] Duan S., Thummala V., and Babu S., Tuning Database
Configuration Parameters with Ituned, Proc. VLDB Endow., vol. 2, pp.
1246–1257, August 2009.
[18]Rodd, S. F., and Kulkrani, U. P., Adaptive Tuning Algorithm for
Performance tuning of Database Management System”, International
Journal of Computer Science and Information Security, Vol. 8, No. 1,
April 2010.
[19] Schnaitter, K., Abiteboul, S., Milo, T., and Polyzotis, N., On-line
Index Selection for Shifting Workloads. In International Workshop on
Self-Managing Database Systems, pages 459–468, 2007.
[20] http://www.tpc.org.
[21] Curino C., et al., Schism: a Workload-Driven Approach to Database
Replication and Partitioning. In VLDB, 2010.
[22] Schnaitter, K., and Polyzotis, N., Semi-Automatic Index Tuning:
Keeping DBAs in The Loop. PVLDB, 5(5):478–489, 2012.
[23] Agrawal S., Chu E., and Narasayya V., Automatic Physical Design
Tuning: Work-load as a Sequence. In SIGMOD, 2006.
[24] Agrawal, S., et al. Integrating Vertical and Horizontal Partitioning
into Automated Physical Database Design. In SIGMOD, 2004.
[25] Bruno,N., and Chaudhuri, S., Constrained Physical Design Tuning.
PVLDB, 2008.

