

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

TIME-, ENERGY-, AND MONETARY COST-AWARE CACHE DESIGN FOR A

MOBILE-CLOUD DATABASE SYSTEM

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

MIKAEL PERRIN

Norman, Oklahoma

2015

TIME-, ENERGY-, AND MONETARY COST-AWARE CACHE DESIGN FOR A

MOBILE-CLOUD DATABASE SYSTEM

A THESIS APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY

Dr. Le Gruenwald, Chair

Dr. Laurent d’Orazio

Dr. Qi Cheng

© Copyright by MIKAEL PERRIN 2015

All Rights Reserved.

iv

Acknowledgements

I particularly thank Dr. Le Gruenwald, the chair of my thesis’s committee and my

supervisor at the University of Oklahoma, as well as Dr. Laurent d’Orazio, my supervisor

at the University of Blaise Pascal and committee member, for their availability during

this project, their guidance all along the different thesis steps and for making me

understand the ins and outs of the research area. I would like to thank Dr. Qi Cheng for

his interest in my thesis project and for taking part on my research committee.

I thank Mr. Jonathan Mullen for his help on many technical challenges and for his

contribution during this project. I also thank Mr. Romain Perriot and Mrs. Baraa

Mohamad for their availability and their help during this project.

I thank Mrs. Virginie Perez Woods for her help within the partnership between

the ISIMA (Institut Supérieur d’Informatique, de Modélisation et de leurs Applications)

and the University of Oklahoma.

I thank the National Science Foundation (NSF) for partially funding my thesis.

Also, I thank Mr. Thibault Lucidarme, Mr. Cyril Beyney, Mrs. Olivia Perret and

Mr. Jeremy Pfeifer for their friendship and their support during those two years at the

University of Oklahoma. Finally, I thank my sister and brother-in-law, Magali and Cyril

Bourgin, and my parents, Annick and Raymond Perrin for their support, without whom

this unbelievable experience would not have happened.

This material is based upon work supported in part by the National Science

Foundation under Grant No.1349285. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of the National Science Foundation.

v

Table of Contents

Acknowledgements ... iv

Table of Contents ... v

List of Tables ... viii

List of Figures .. ix

Abstract .. xiii

Chapter 1: Introduction ... 1

1.1 Definitions .. 1

1.1.1 Mobile Environment .. 1

1.1.2 Cloud Environment ... 1

1.1.3 Mobile-Cloud Environment ... 2

1.1.4 Cache ... 2

1.2 Problem Definition ... 4

1.2.1 Existing Architecture ... 5

1.2.2 Problem .. 9

1.3 Organization of the Thesis .. 10

Chapter 2: Literature Review ... 11

2.1 Semantic caching .. 11

2.1.1 Query Trimming .. 16

2.1.2 Query Processing ... 18

2.2 Optimization ... 19

2.2.1 Query estimation ... 19

2.2.2 Time estimation ... 21

vi

2.2.3 Energy estimation .. 21

2.3 Cloud Query Processing ... 23

2.4 Conclusions .. 25

Chapter 3: Proposed Solution and Architecture ... 27

3.1 Cost Estimation on the Mobile Device ... 27

3.1.1 Cache Analysis Cost Estimation ... 27

3.1.2 Query Processing Cost Estimation on the Mobile Device 28

3.1.3 Query Processing Cost Estimation on the Cloud 29

3.2 Design and Conception of the MOCCAD-Cache Algorithm 30

3.2.1 Query Evaluation Preparation ... 38

3.2.2 Inputs ... 39

3.2.3 Query Cache Analysis ... 41

3.2.4 Estimation Regarding the Query Cache Analysis Result 41

3.2.5 Decision ... 42

3.2.6 Query Evaluation ... 43

3.3 Algorithm Running Illustration .. 43

3.3.1 Cache Hit ... 45

3.3.2 Cache Partial Hit .. 46

3.3.3 Cache Miss .. 49

3.3.4 Cache Extended Hit ... 50

3.4 Conclusions .. 52

Chapter 4: Experimentation and Results .. 54

4.1 Prototype ... 54

vii

4.1.1 Environment .. 54

4.1.2 Project Organization .. 55

4.1.3 Design and Implementation ... 56

4.2 Experimentation ... 60

4.2.1 Experimentation Context ... 61

4.2.2 Performance Metrics.. 64

4.2.3 Results ... 69

4.2.3.1 Impact of the Exact Hit Percentage on the Query Cost 69

4.2.3.2 Impact of the Extended Hit Percentage on the Query Cost 74

4.2.3.3 Impact of the Partial Hit Percentage on the Query Cost......................... 82

4.2.3.4 Global Impact of Cache Hit Percentage on the Query Cost 88

Chapter 5: Conclusion and Future Works .. 90

5.1 Summary of the Performance Evaluation Results .. 91

5.2 Future Works .. 92

References .. 94

viii

List of Tables

Table 1 - Example of the cost without materialized view .. 7

Table 2 - Example of the cost with a materialized view .. 8

Table 3 - Experimentation Table Schema .. 63

Table 4 - Static Parameters ... 67

Table 5 - Dynamic Parameters ... 68

Table 6 - Cached Queries' Result Size ... 69

ix

List of Figures

Figure 1 - 3-tier architecture ... 5

Figure 2 - Amazon Web Service prices - EC2 ... 8

Figure 3 - Semantic Cache Example [14] ... 13

Figure 4 - Example: Cache Hit ... 14

Figure 5 – Example: Cache Extended Hit .. 14

Figure 6 - Example: Cache Partial Hit.. 15

Figure 7 - Example Cache Miss ... 15

Figure 8 - Satisfiability and Implication Algorithms Complexity [18] 17

Figure 9 - Cache Manager Components ... 30

Figure 10 - Query Cache Example ... 32

Figure 11 - Mobile Estimation Cache Example ... 33

Figure 12 - Cloud Estimation Cache Example ... 33

Figure 13 - The four main steps of the query processing algorithm............................... 33

Figure 14 - Activity Diagram MOCCAD-Cache Algorithm .. 35

Figure 15 - Get Mobile Estimation Sub-Process .. 36

Figure 16 - Get Cloud Estimation Sub-Process .. 36

Figure 17 – MOCCAD-Cache Algorithm .. 37

Figure 18 - Acquire Estimation Function ... 38

Figure 19 - Entity-Relationship Diagram for Algorithm Illustration 44

Figure 20 - Project Table.. 44

Figure 21 - Doctor Table .. 45

Figure 22 - Patient Table .. 45

file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585971
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585974
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585978
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585983
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585986
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585987

x

Figure 23 - Caches' States before and after Cache Hit Example 46

Figure 24 - Caches' States before the Partial Hit Example ... 48

Figure 25 - Caches' States after the Partial Hit Example and before the Cache Miss

Example .. 49

Figure 26 - Caches' States after the Cache Miss Example and before the Extended Hit

Example .. 50

Figure 27 - Caches' States after the Extended Hit Example ... 52

Figure 28 - HTC One M7 ... 55

Figure 29 - Cache Managers UML Class Diagram .. 56

Figure 30 - Query Processors UML Class Diagram ... 58

Figure 31 - Query Processing on the Prototype .. 59

Figure 32 - Settings on the Prototype ... 60

Figure 33 - Processed Queries and Cached Items on the Prototype 60

Figure 34 - Cloud Architecture for Experimentation ... 61

Figure 35 - Approximated Total Result Size per Query Set Regarding the Cache Exact

Hit Percentage... 70

Figure 36 - Processing Time for Fifty Queries Regarding Cache Exact Hit Percentage 71

Figure 37 - Energy Consumption for Fifty Queries Regarding Cache Exact Hit Percentage

 .. 72

Figure 38 - Money Cost for Fifty Queries Regarding Cache Exact Hit Percentage 73

Figure 39 - Cloud Processing Time for Fifty Queries Regarding Cache Exact Hit

Percentage ... 74

file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585996
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418585999
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418586000
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418586001
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418586002
file:///C:/Users/Mikaël/Google%20Drive/coursOU/Thesis/Thesis%20report/Thesis_report%20V8.docx%23_Toc418586003

xi

Figure 40 - Approximated Total Result Size per Query Set Regarding Cache Extended

Hit Percentage... 75

Figure 41 - Processing Time for Fifty Queries Regarding Cache Extended Hit Percentage

 .. 76

Figure 42 - Percentages of Queries Processed on Cloud Regarding Cache Extended Hit

Percentage ... 77

Figure 43 - Energy Consumption for Fifty Queries Regarding Cache Extended Hit

Percentage ... 77

Figure 44 - Total Result Size of Queries Reprocessed on Cloud Regarding the Percentage

of Extended Hit ... 79

Figure 45 - Money Cost for Fifty Queries Regarding Cache Extended Hit Percentage 79

Figure 46 - Percentages of Queries Processed on the Cloud Regarding Cache Extended

Hit Percentage with Money Constraint .. 80

Figure 47 - Percentages of Queries not Meeting the Money Constraint Regarding Cache

Extended Hit Percentage .. 81

Figure 48 - Approximated Total Result Size per Query Set Regarding the Cache Partial

Hit Percentage... 83

Figure 49 - Percentages of Queries Processed on the Mobile Regarding Cache Partial Hit

Percentage ... 84

Figure 50 - Processing Time for Fifty Queries Regarding Cache Partial Hit Percentage

 .. 85

Figure 51 - Download Time for Fifty Queries Regarding Cache Partial Hit Percentage85

xii

Figure 52 - Energy Consumption for Fifty Queries Regarding Cache Partial Hit

Percentage ... 86

Figure 53 - Money Cost for Fifty Queries Regarding Cache Partial Hit Percentage 87

Figure 54 - Processing Time Regarding Cache Hit Percentage 89

Figure 55 - Monetary Cost Regarding Cache Hit Percentage .. 89

xiii

Abstract

Growing demand for more mobile access to data is only matched by the growth

of large and complex data. The availability and scalability of cloud resources when

combined with techniques of caching and distributed computation provide tools to

address these problems, but bring up new multi-dimensional optimization challenges

concerning the three cost constraints: query execution time, energy consumption on the

mobile device, and monetary cost to be paid to the cloud service providers. To address

these challenges, this thesis develops a caching algorithm, called MOCCAD-Cache, for

a MObile Cloud Cost-Aware Database system (MOCCAD) that consists of three tiers:

mobile users, data owner, and cloud. The algorithm is aimed at improving query response

time while taking the constraints on energy consumption and monetary cost into

consideration.

To improve query response time, MOCCAD-Cache constructs a query cache on

the mobile device based on the concept of semantic caching. This cache stores not only

the results of the previous queries, but also the metadata associated with those queries.

With this metadata, further server communication is either eliminated when the result of

a query is stored entirely in the cache, or reduced when the cache contains only a part of

the data required by the query. To determine this, MOCCAD-Cache employs a query

trimming technique to compare the input query with the query contained in each metadata

entry. In the case when the cache partially contains the query result, a probe query will

be created to retrieve the existing data from the query cache, and a remainder query will

be created to retrieve the data not contained in the query cache. The remainder query will

then be sent to the cloud for execution.

xiv

Introducing semantic caching makes it mandatory to find a trade-off between

running the query on the cloud and running the query on the mobile device with respect

to the three constraints. In particular, it is necessary to estimate the time and energy to be

spent to retrieve data on the mobile device and to compare them with the time and energy

to retrieve data on the cloud. Since computing these estimations requires time, energy and

money, MOCCAD-Cache equips the mobile device with an estimation cache to reduce

such overheads. Each estimation cache entry contains the estimated time and energy

required to process a query on the mobile device as well as the estimated time and

monetary cost needed to process the same query on the cloud. MOCCAD-Cache then

uses those estimations to determine which one, the mobile device or the cloud, is the best

one to execute a query given the query’s constraints. Finally, it constructs an appropriate

plan to execute the query.

To study the performance of the proposed algorithm, a prototype was built on an

Android Smartphone connected to a private cloud instance where the database system,

Hive, was used to manage data. The prototype allows the user to build queries, specify

constraints, retrieve the query results, examine the query cache and the estimation cache,

and view statistics about the query executions in order to analyze the query processing

performance. Experiments were conducted on the prototype using various queries.

1

Chapter 1: Introduction

1.1 Definitions

1.1.1 Mobile Environment

While not a new concept, mobility is a field found in more and more research

problems, both in academia and in industry. The main principle of mobile computing is

the possibility to provide to the user resources independent of his/her location. The user

does not need to be at home, in front of a computer, to access data. A mobile device has

the advantage of being light and easily transportable, but nevertheless, has limited

resources. Indeed, memory, computing power, screen size, network connection and

energy are several constraint examples that need to be considered within the mobile

computing field.

1.1.2 Cloud Environment

The constraints associated with a mobile environment discussed in the previous

section are even more important when they are compared to the resources available on a

server, and even more with a computation service on the cloud. Even though the client-

server architecture is well understood, it does not provide the advantages of cloud

computing, such as elasticity and high end resource management. Indeed, when a query

is sent to a service on the cloud, this service can either decide to add a number of nodes

to process the query (scale out or horizontal elasticity) [1], or to increase the computation

power and/or the memory of each node processing the query (scale up or vertical

elasticity) [1]. Also, even though cloud computing growth shows different obstacles such

as data business continuity, data lock-in or bugs in large distributed database systems, it

2

also provides different opportunities such as using multiple cloud providers, providing

standardized APIs or inventing a debugger relying on distributed VMs for example [2].

1.1.3 Mobile-Cloud Environment

The previous subsections can show how interesting it can be to provide cloud

computing services to mobility. Undeniably, when the mobile device’s lack of resources

becomes restrictive, using cloud services becomes necessary to answer to the user

constraints. This leads to what has been defined as Mobile Cloud Computing which has

many possible applications such as image processing, natural language processing,

sharing GPS, sharing internet access, sensor data applications, crowd computing, and

multimedia search and querying [3]. In this type of environment, the mobile device can

be considered as a client (i.e. the Gmail application) using some powerful servers (i.e.

Google Servers), and providing some additional information such as client’s location.

Another possibility is to use the mobile devices as resources. An example to this is a

mobile device running a language translation application on a local cloud. Other mobile

devices act as resource providers. Finally, [4] defines another architecture offloading the

work on several local multi-core computers, called cloudlet, and being connected to the

cloud servers. Those multi-core computers allow the user to have a high performance

connectivity with the cloud and thus, permit some applications such as real-time image

recognition.

1.1.4 Cache

To reduce the amount of communication throughout the network between the

mobile device and the server (or a cloud service), a cache system can be used [5]. A cache

system is a software or a hardware component allowing to store previously processed

3

data. Those data could have been computed or downloaded from a server. If those data

were to be requested again, the cache would return them in a transparent way in order to

minimize the processing cost of the queries. At least two different event types can occur

in the cache:

 Cache hit: A looked up item is found within the cache.

 Cache miss: A looked up item cannot be found within the cache.

Several caching types exist according to the application domain for which they

have been used (CPU caching, Web caching, DBMS caching), or according to the used

algorithm, for example, a database management system can contain tuple caching, page

caching or semantic caching among other things [6]. The cached data can be stored within

different types of memories (virtual memory or physical memory) and can be handled

directly by the hardware (CPU caches).

A semantic cache allows the cache to be used even though some of the data are

not available in the cache. Therefore, the input query will be divided into two sub-queries.

The first one will be used to retrieve data from the cache. The other one will be sent to

the server to retrieve the missing data. To illustrate this type of caching, let us consider a

scenario in which a doctor wants to retrieve the data of his/her patients being 30 years old

or younger. Within the cache, all the data items of the patients 32 years old or younger

can be found. Thus, the cache already contains the doctor’s query result. With a semantic

cache, the segments will be analyzed and then processed to retrieve this result from the

cache. However, with a standard cache, the doctor’s query and the query contained in the

cache are different. Therefore, the doctor’s query will be processed on the database server.

4

1.2 Problem Definition

On the cloud, the different pricing models used by the cloud service providers

bring a new challenge for the management of the resources, which is to solve a two-

dimensional optimization problem concerning two constraints: query execution time and

monetary cost that the cloud service tenants must pay to the cloud service providers.

On the mobile device, one of the most important resources for its users is the

remaining battery life. The remaining energy can be used either to evaluate queries or to

check the results. Therefore, this adds up a third dimension to the optimization problem:

the mobile device’s energy consumption. As explained earlier in Section 1.1.4, when

using a cache system, the main goal is to reduce the network communication between the

user and the cloud, and therefore, the query processing time. In addition, using semantic

caching allows the size of the data transferred between the cloud and the mobile device

to be reduced. However, in order to determine whether it is possible to use one or several

entries in the cache, it is necessary to analyze those cache entries beforehand. This

analysis has a cost that can impact the energy consumption more than the query execution

time [7].

5

1.2.1 Existing Architecture

Figure 1 - 3-tier architecture

To be able to solve this optimization problem in an environment where data

locality matters, a 3-tier architecture has been modelled (Figure 1). This architecture was

originally proposed for medical applications. Indeed, we can imagine that during a

meeting, a hospital director wants to access some doctor information items and projects.

To do this, he/she uses a tablet and builds the query with the user interface provided by

the application installed on it. The hospital owns some private data, such as the doctor's

identity, and stores it on a server infrastructure with physical limitations. Those resources

are not elastic: adding a new server will require additional money and time mandatory for

its purchase, delivery, set up and configuration. This static infrastructure is called the data

owner within our architecture. To finish, some of the information is not considered

private, like this meeting’s date and time with the director, for example. These

information items can be stored on elastic infrastructures on the cloud called service

6

providers. Those services can answer to the real need in computing resources or storage

resources for the hospital. The data owner can access those services. While this

architecture was originally developed for medical applications, it is general enough to be

applied to many other applications. Below we describe the three tiers of the architecture:

the mobile device, data owner, and cloud service provider.

The mobile device: it is used to build queries that allow mobile users to access

data stored either at the data owner or at the cloud, thanks to the application user interface.

The device is easily transportable, but does not own many resources. The application uses

a query cache to store the user's query results and the query’s metadata.

The data owner: it owns the data items and is responsible for them. In France, a

certified medical host is used for it. In the United States, the medical information does

not have to be stored in a certified medical host; however, several rules defined by the

HIPAA (Health Insurance Portability and Accountability Act) [8] makes a minimum

storage security mandatory for the different cloud services.

The Cloud service provider: It provides highly scalable services to its users’

needs. [1] and [2] define the different terms used to refer to cloud computing. Cloud

computing refers to the applications as services and the infrastructure (software and

hardware) providing those services. There exist different levels of services on the cloud:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS) [1]. Each service provider provides several pricing models regarding the types of

services, the used resources and the server locations. For example, the Amazon's

computation service (EC2) gives the details of its prices for each usable services on its

environment (Figure 2). A public cloud is defined as a data center (hardware and

7

software) providing a service called utility computing. This service is based on the pay-

as-you-go method which charges the user based on usage. A private cloud is defined as

an internal data center of an organization made available privately and large enough to be

used for cloud computing. Concerning pricing, cloud computing infers that the resources

are available on demand and quickly enough to adapt to any escalation. Also, cloud users

do not have any commitment, meaning that users can use more resources only when there

is an increase in their needs and can stop paying as soon as they do not want to use those

services anymore. To define the cost related to each application, cost models in terms of

computation, storage and communication are necessary. [9] provides examples of cost

models and different challenges related to materialized views in the cloud. Indeed, such

views require some cost for storage, computation and communication and thus emphasize

the tradeoff between time and monetary cost we can find on the cloud. For example, Table

1 and Table 2 show some examples of costs when one respectively uses and does not use

a materialized view on the cloud. With the costs in Table 1, the storage cost is $50 and

the computing cost is $12. With the costs in Table 2, the storage cost is $55 and the

computing cost is $9.6. With materialized views, the cost performance increases by 20%

but the price increases by 4%. These examples help to see the types of tradeoffs between

time and money that we can find when dealing with cloud computing.

Table 1 - Example of the cost without materialized view

Storage Cost $0.10/GB/Month

Computing Cost $0.24/hour

Dataset size 500GB

Monthly Processed Queries 50 hours

8

Table 2 - Example of the cost with a materialized view

Storage Cost $0.10/GB/Month

Computing Cost $0.24/hour

Dataset size 550GB

Monthly Processed Queries 40 hours

In the context of the hospital example, once the director has chosen the doctor for

whom he wants to retrieve the information, the mobile device application will first

determine whether the cache stores a part of the result of the query. If some of the

information items that need to be retrieved in addition to those available are in the cache,

then the query is sent to the data owner. Those information items regarding the doctor

can be located on other data owners’ servers that are willing to share those items with the

current data owner or on some storage services on the cloud. Therefore, it is necessary to

Figure 2 - Amazon Web Service prices - EC2

9

send the query to those other data owners and cloud services in order to retrieve the whole

query result (i.e. all the information items concerning the doctor and his/her projects).

1.2.2 Problem

Within the previously described environment, we can therefore understand this

thesis problem which involves the following research questions: How can we process fast

queries from a mobile device while respecting the constraints on energy consumption and

monetary cost? How to perform cheap queries while respecting the constraints in energy

and time? More particularly, how can we use the cache system to estimate whether it is

more profitable to process the query on the mobile device or on the data owner/cloud

servers?

The key contribution of this thesis is the development of a second cache on the

mobile device called estimation cache working with the semantic query cache. To solve

this complex problem, it is mandatory to start with a simpler version of the problem. First,

several assumptions are made about the type of query posed by the user. Indeed, we

suppose that each query is processed against one relation only, the goal being not having

to handle join operations. Also, this query will be a selection query without any

projection. This way, if a tuple is stored in the cache, we know it owns all the attributes

of the relation. The query predicates will correspond to a conjunction of inequalities.

Concerning the network connection between the mobile device and the data owner, we

assume that it will always be sufficient, that the wireless technology used is Wi-Fi and

that no network interruption happens during the data transfer between the two entities.

The time and money used by the data owner to estimate the cost for the query evaluation

on the cloud servers or on the data owner itself will be considered negligible. Also, we

10

will assume that the database hosted on the cloud or on the data owner is not altered.

From the mobile device, only the data owner can be accessed. However, since we do not

assume any difference between the data owner and the cloud servers while focusing on

the cache, the data owner and the cloud servers will be considered as one. For a query

cache hit, the time, energy and money used are also considered negligible, and the query

will also be automatically evaluated and its result will be sent back to the user.

1.3 Organization of the Thesis

First of all, this thesis details the background and literature review necessary for

the understanding and the elaboration of a first solution in Chapter 2. This part describes

the different caching possibilities and the different estimation techniques used during

query processing. Secondly, this thesis presents the proposed algorithm, called

MOCCAD-Cache, to solve the introduced problem as well as the solution’s architecture

in Chapter 3. Then, Chapter 4 describes the solution’s prototype implementation and the

results of the experiments conducted to study the performance of the proposed solution.

Finally, Chapter 5 concludes the thesis and presents future work.

11

Chapter 2: Literature Review

This chapter reviews the existing work in the areas of semantic caching and query

processing estimations. In addition, it details the different tools needed to build the

proposed MOCCAD-Cache algorithm.

2.1 Semantic caching

In order to demonstrate the performance of semantic caching for a server in ideal

conditions, [6] and [10] compared this type of caching with page caching and tuple

caching. A page is a transfer unit of a static size between the client and the server. For

page caching, when a query is posed at the client side, if one of the pages has not been

found, then all the data corresponding to this page will be obtained from the server. For

tuple caching, the unit is the tuple itself. This type of cache brings up good flexibility but

a huge overhead in terms of performance. More recently, [11] showed the performance

of semantic caching for some types of applications requiring important workloads and

using a limited bandwidth environment. This type of environment specifically can be very

similar to the one in our application domain since medical data gathers many information

items which make their processing difficult and expensive and since the bandwidth on

the mobile device is unstable due to its owner’s displacement. Therefore, those papers

support the choice of semantic caching inside our Mobile-Cloud environment as a good

way to reduce the overhead cost of query processing.

[12] and [13] studied semantic caching performance in a mobile environment and

mainly focus on location dependent applications to emphasize how useful semantic

caching can be in such an environment. Indeed, location dependent semantic caching

12

brings another step to this technique since the data in the cache can be sorted and replaced,

not only based on its access time but also based on its location. [10] proposes algorithms

allowing semantic caching to be used for web queries to retrieve relevant information

efficiently in Web repositories.

[6] and [14] offer a formal definition of semantic caching. Three key ideas are

used in defining semantic caching. First of all, semantic caching contains a semantic

description of the data contained in each cache entry such as the query relation, the

projection attributes and the query predicates. This semantic description is used to

designate the data items contained in the corresponding entry and to know quickly if the

entry can be used to answer to the input query. Secondly, it contains a value function

permitting the replacement of the cache data. For example, if the chosen value function

is time, we can choose to replace the oldest entries. Finally, each entry contains a set of

tuples storing the result of each query. The size of this set is dynamic. Each entry is called

a semantic region and is considered as the unit for replacement within the cache. It stores

a list of projection attributes, a list of constraints (predicates), the number of tuples for

this region, the maximum size of a tuple, the result tuples and additional data used to

handle data replacement within the cache. Figure 3 shows an example of a semantic cache

with S the segment id, SR the relation from which the tuples come from, SA the projection

attributes, SP the predicates, STS the time stamp used for replacement, and SC the content

of the segment or more exactly the location of the tuple set.

13

Figure 3 - Semantic Cache Example [14]

When a query is processed, the semantic cache manager analyses the cache

content and creates two sub-queries. The first one, called probe query, is used to retrieve

data in the cache. The second one, called remainder query, retrieves the missing data

from the database server. [14] defines the notion of query trimming which is the process

corresponding to the cache analysis, necessary to split the input query into a probe query

and a remainder query. More recently, other contributions have been added to this area

[15], [16] and [17]. However, even though their contributions improve the performance

of the query trimming algorithm, the version in [14] provides much more accuracy

towards its implementation. Indeed, with the contribution of this thesis lying mainly in

the estimation component, it is therefore important to choose a reliable and easy-to-

implement semantic caching system for the query cache. During this query trimming

algorithm, 4 types of event can occur: cache hit, cache extended hit, cache partial hit, and

cache miss. These events are described in detail below.

Cache Hit: As previously described, it defines the availability of a complete

query result in the cache. The following illustration (Figure 4) presents an example of this

type of event for the selection of patients with a heart rate lower than 57 from the database

table NOTE where the heart rate is represented by the attribute HR. Query (1) is the same

as the input query; therefore we can use its result to respond to the input query.

14

Input query:

𝜎𝐻𝑅<57(𝑁𝑂𝑇𝐸)

Queries available in the query cache:

𝜎𝐻𝑅<57(𝑁𝑂𝑇𝐸)

(1)

𝜎𝑎𝑔𝑒>28 ∧ 𝑎𝑔𝑒<32(𝐷𝑂𝐶𝑇𝑂𝑅)

(2)

𝜎𝐻𝑅=57(𝑁𝑂𝑇𝐸)

(3)

Figure 4 - Example: Cache Hit

Cache Extended Hit: Some additional operations and processing need to be done

in order to retrieve the whole query result from the cache. There are several types of cache

extended hit as shown in Figure 5. Figure 5.a shows a case where the result of the input

query is included inside one of the regions in the cache. Figure 5.b shows a situation

where the result of the input query needs to be retrieved from several segments in the

cache. Then, Figure 5.c shows a case where the input query and the semantic region’s

query are equivalent. Thus, if we retrieve the semantic region’s query result, we also

retrieve the input query result.

Figure 5 – Example: Cache Extended Hit

15

Cache Partial Hit: Part of the query result can be retrieved from the cache with

a probe query, but another part needs to be retrieved from the database server with the

remainder query. Indeed, in the following example (Figure 6), query (3) can be used in

order to retrieve only a part of the query result. Therefore, all the tuples corresponding to

the remainder query 𝜎𝐻𝑅>57(𝑁𝑂𝑇𝐸) would be downloaded from the database server.

Input query:

𝜎𝐻𝑅≥57(𝑁𝑂𝑇𝐸)

Queries available in the query cache:

𝜎𝐻𝑅<57(𝑁𝑂𝑇𝐸)

(1)

𝜎𝑎𝑔𝑒>28 ∧ 𝑎𝑔𝑒<32(𝐷𝑂𝐶𝑇𝑂𝑅)

(2)

𝜎𝐻𝑅=57(𝑁𝑂𝑇𝐸)

(3)

Figure 6 - Example: Cache Partial Hit

Cache Miss: This type of event represents the case where none of the semantic

regions can be used to answer to the input query. Figure 7 emphasizes this statement by

showing an example where none of the tuples corresponding to 42 year old doctors

required for the input query is present in the cache.

Input query:

𝜎𝑎𝑔𝑒=42(𝐷𝑂𝐶𝑇𝑂𝑅)

Queries available in the query cache:

𝜎𝐻𝑅<57(𝑁𝑂𝑇𝐸)

(1)

𝜎𝑎𝑔𝑒>28 ∧ 𝑎𝑔𝑒<32(𝐷𝑂𝐶𝑇𝑂𝑅)

(2)

𝜎𝐻𝑅=57(𝑁𝑂𝑇𝐸)

(3)

Figure 7 - Example Cache Miss

16

2.1.1 Query Trimming

In order to know which type of query trimming event happens, it is not necessary

to process all the tuples within each semantic region. Indeed, a semantic cache provides

a sufficient amount of information to be able to compare the input query and the semantic

region’s query and thus, gain performance. [18] provides such an efficient algorithm to

solve the problems of implication and satisfiability for a conjunction of inequalities as

defined below. These concepts are used in [14] for query trimming. The main idea is to

be able to compare the input query predicates with the current semantic region’s query

predicates.

An inequality, as defined in [18], can have two different shapes: {X op C} or {X

op Y}, where X and Y are attributes or variables which belong to the real or integer domain,

C is a constant which belongs to the same domain as X, and op is the comparative operator

in {<, ≤, =, ≥, >, ≠}.

Satisfiability [18]: The predicates (in this situation, a conjunction of inequalities)

are said to be satisfiable if there exists an assignment returning true for the values assigned

to the different attributes. For example, the following set of predicates (1) is satisfiable

because the assignment X = 21 and Y = 12 returns true.

 𝑆 = (𝑋 > 12) ∧ (𝑋 < 22) ∧ (𝑌 = 12) (1)

 Also, the following set of predicates (2) is satisfiable if 𝑋 ∈ ℝ, but is

unsatisfiable if 𝑋 ∈ ℤ. Indeed the assignment X = 10.5 returns true.

 𝑆 = (𝑋 < 12) ∧ (𝑋 > 10) ∧ (𝑋 ≠ 11) (2)

17

Implication [18]: A conjunction of inequalities S implies a conjunction of

inequalities T if each assignment satisfying S also satisfies T. For example, S implies T

in the following:

 𝑆 = (𝑋 > 0) ∧ (𝑋 < 4), 𝑋 ∈ ℤ (3)

 𝑇 = (𝑋 ≥ 0) ∧ (𝑋 < 5), 𝑋 ∈ ℤ (4)

 Indeed, to satisfy S in the integer domain, 𝑋 ∈ {1,2,3}. Since the assignment of

any of those values returns true for T, we can say that S implies T.

Equivalence [18]: If S implies T and T implies S, S and T are equivalent.

 The complexity of each algorithm introduced by [18] is shown in Figure 8. |S| and

|T| represent the numbers of inequalities for the set of predicates S and the set of predicates

T, respectively. The operator 𝑂𝑃¬≠ indicates that no inequality can be found with the

operator ≠. The operator 𝑂𝑃𝑎𝑙𝑙 indicates that each inequality operator belongs to the set

of operators {<, ≤, =, ≥, >, ≠}.

Figure 8 - Satisfiability and Implication Algorithms Complexity [18]

18

 However, this algorithm brings up an additional constraint towards the type of

attribute that can be used within the cache. Indeed, this algorithm only uses integer or real

numbers within a segment, but not both.

2.1.2 Query Processing

Semantic caching, however, can create some overhead in several cases. This

overhead has not been considered, mainly due to the assumption made in the previous

works that it is always more efficient to process a query on the mobile device’s cache

rather than on the cloud. For many years, the bandwidth and the resources provided by

the server disallowed one to even think about using the server to process the query when

the result is already close to the user. However the power of cloud computing changes

the game’s rules. The following example shows the limitations of using the semantic

cache algorithm.

Let’s assume that one user wants to process the following input query:

𝑄1 = 𝜎𝑖𝑑=42(𝐷𝑂𝐶𝑇𝑂𝑅)

The cache already contains the result for the query:

𝑄𝑆 = 𝜎𝑖𝑑<200000(𝐷𝑂𝐶𝑇𝑂𝑅)

In order to retrieve the input query result on the mobile device, 199999 tuples

need to be analyzed (in the case there are no indexes) when only one tuple corresponding

to the doctor id number 42 needs to be retrieved. Processing Q1 on the cloud which is able

to process the query way faster, may be relevant in this case, especially because the time

to retrieve the result through the network is derisory since it corresponds to the retrieval

of only one tuple.

19

In addition, there might be a similar limitation in the case of a partial hit on the

query cache. Let’s take the following queries as an example:

Let Q2 be the query that some user wants to process.

𝑄2 = 𝜎𝑖𝑑≥150000 ∧ 𝑖𝑑<150010(𝐷𝑂𝐶𝑇𝑂𝑅)

 And QS the query contained in the cache:

𝑄𝑆 = 𝜎𝑖𝑑≤150000(𝐷𝑂𝐶𝑇𝑂𝑅)

 In this case only the tuple corresponding to the id equal to 150000 can be retrieved

from the cache. Thus, when this type of partial hit occurs, the entire segment needs to be

processed to retrieve the one and only tuple answering Q2, and in addition, it needs to

retrieve the remaining part of the result from the Cloud. The limitation is quite stark in

this case since processing the whole query on the cloud can be way faster, especially to

retrieve only ten tuples.

2.2 Optimization

2.2.1 Query estimation

One of the main steps during query processing is called query optimization. It

comes after the query translation and before the query evaluation. Given a query, there

are several ways to retrieve its result. For example, if a query involves a selection and

projection, it could either be decided to apply the projection before the selection or to

apply the selection before the projection. Choosing which query is less expensive to

evaluate is part of this query optimization process. Therefore, there exist several

evaluation plans for a query. To be able to choose one, cost estimations are required. For

example, if the goal is only to minimize the money spent on the cloud, the choice should

20

be on the query that has been estimated to consume the minimum amount of money on

the cloud. [19] explains that the execution cost for an operation on a database depends on

the statistics and the sizes of the inputs. In order to compute the total amount of time and

energy needed to process the query on the mobile device to process a query on the cloud,

it is necessary to consider the time and energy needed to transfer the data between the

mobile device and the cloud. To do this, we need to estimate the size of the query result

which is sent back from the cloud. [20] provides a formula to compute this size. This

formula provides the following items:

 nr, the number of tuples in the relation r (retrieved from the database

catalog on the cloud).

 Ir, the size of each tuple in the relation r (retrieved from the database

catalog on the cloud, with the assumption that the database will not be

altered).

 V(A,r), the number of different values that we can find in the relation r for

the attribute A. This value is equivalent to the size of πA(r). If A is the

primary key of the relation r, V(A,r) = nr (retrieved from the database

catalog on the cloud).

If the query corresponds to 𝜎𝐴=𝑎(𝑟), the size can be computed as follows:

 𝑆𝑖𝑧𝑒 = 𝐼𝑟 ×
𝑛𝑟

𝑉(𝐴, 𝑟)
 (5)

If the query corresponds to 𝜎𝐴≤𝑣(𝑟), the size can be computed as follows:

 𝑆𝑖𝑧𝑒 = 0, 𝑖𝑓 𝑣 < min(A, r) (6)

 𝑆𝑖𝑧𝑒 = 𝑛𝑟 × 𝐼𝑟 , 𝑖𝑓 𝑣 > max(A, r) (7)

21

𝑆𝑖𝑧𝑒 = 𝐼𝑟 ×

𝑛𝑟 × (𝑣 − min(𝐴, 𝑟))

(max(𝐴, 𝑟) − min(𝐴, 𝑟))
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

 min(𝐴, 𝑟) and max(𝐴, 𝑟) are respectively the minimum value and the maximum

value in the relation r for the attribute A.

2.2.2 Time estimation

 Knowing the bandwidth speed between the cloud and the mobile device, we can

determine the time to transfer data between the two entities. For example, if the query

result size is estimated to be 2 MB, and the throughput between the mobile device and

the cloud is around 32 Mb/s (4 MB/s), then the time to retrieve the result is estimated to

be 0.5 seconds.

 Finally the estimated time to process the query on the cloud 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑, is:

 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑 = 𝑡𝑠𝑒𝑛𝑑_𝑞𝑢𝑒𝑟𝑦 + 𝑡𝑒𝑥𝑒𝑐_𝑞𝑢𝑒𝑟𝑦 + 𝑡𝑠𝑒𝑛𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 (9)

 With

 𝑡𝑠𝑒𝑛𝑑_𝑞𝑢𝑒𝑟𝑦: the time to send the query to the cloud. This time is negligible

due to the size of the data sent (only a few bytes).

 𝑡𝑒𝑥𝑒𝑐_𝑞𝑢𝑒𝑟𝑦: the time to process the query on the cloud.

 𝑡𝑠𝑒𝑛𝑑_𝑟𝑒𝑠𝑢𝑙𝑡: the time to download the query result from the cloud to the

mobile device.

2.2.3 Energy estimation

From the query execution time, it is possible to estimate the corresponding energy

consumption. Three different steps define query processing time on the mobile device:

22

 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛, the time to compute the estimation (i.e. time to

process the cache to determine the probe and remainder queries and

compute their respective estimations).

 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒, the time to process a query on the mobile device.

 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑, the time to process a query on the cloud.

Also, different steps described in [7] and [21] allow us to model the power

consumption during the different activities and suspended states on the mobile device.

Here we use the electric intensity I in Amperes.

 𝐼𝑖𝑑𝑙𝑒, the energy consumed when the mobile device is awake but no

application is active (considered negligible),

 𝐼𝐶𝑃𝑈, the energy consumed when the mobile device processes a query on

its cache.

 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑙𝑜𝑤, the energy consumed when the mobile device waits while

the query is processed on the cloud.

 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_ℎ𝑖𝑔ℎ, the energy consumed when the mobile device retrieves the

query results from the cloud.

In order to know the amount of battery has been consumed, we need to determine

the intensity of each component used in the previously defined states. The consumed

energy amount allows us to quantify the amount of energy that we drain from the battery,

which can be computed using the formula, with I the current in Amps and t the processing

time in hours:

 𝑄(𝐴ℎ) = 𝐼(𝐴) × 𝑡(ℎ) (10)

23

 Therefore, we can simplify the computation of the energy consumption estimation

by using only the electrical charge.

 𝑄𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐼𝐶𝑃𝑈 × 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 (11)

 𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒 = 𝐼𝐶𝑃𝑈 × 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒 (12)

 𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑 = 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑙𝑜𝑤 × 𝑡𝑒𝑥𝑒𝑐_𝑞𝑢𝑒𝑟𝑦 + 𝐼𝑛𝑒𝑡𝑤𝑜𝑟𝑘_ℎ𝑖𝑔ℎ × 𝑡𝑠𝑒𝑛𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 (13)

 𝑄𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑚𝑜𝑏𝑖𝑙𝑒 + 𝑄𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑐𝑙𝑜𝑢𝑑 (14)

 This analysis and the background towards the different ways to use semantic

caching and its relation to the cost estimations for the different steps of query processing

in this environment are used in the proposed algorithm MOCCAD-Cache which is

described in the next chapter, Chapter 3.

2.3 Cloud Query Processing

In addition to the query optimization on the mobile device, it is mandatory to take

into account the optimization made on the cloud. As described in Chapter 1, several

pricing models are proposed by different cloud providers for each of the cloud services

they can sell. Also, several computation, transfer and storage models can be used

regarding different cloud services. For example, Amazon Glacier [22] is a good solution

in terms of monetary cost if most of the queries used on this storage service are insert

operations and a few of them are read operations. Amazon S3 [23] is more relevant if the

restriction on money is lower and if a quicker and more frequent access to the data is

required.

Map Reduce is a programming model that permits distributed and parallel

computing on a cluster [24]. Map Reduce is the heart of Hadoop, a framework made of a

24

file system (HDFS) and a resource management platform (YARN). Several platforms for

data management have been built on top of Hadoop, like Hive [25] or Pig [26].

A common way to represent queries on the cloud is to define them under directed

acyclic graphs (DAGs) [27], [28]. Each node corresponds to operations and each edge

represent the data flow. Each operation can be a logical operation in a query plan (operator

graph), or a concrete operation to process the corresponding data (concrete operator

graph). For those concrete operator graphs, the query execution and the cost estimation

is similar to what has been explained in the previous section and in a more general way,

equivalent to the RDBMS case. The difference between cloud query processing and query

processing on a RDBMS is that the different possibilities to process a query are infinite

on the cloud due to the infinite number of configurations and query plans. Also, query

optimization on the cloud takes into consideration the money in addition of the time,

making it a two dimensional optimization problem. To solve this problem, [28] first

minimizes the processing time with a budget constraint, then minimizes the monetary

cost with a time constraint and finally finds the trade-off between the suggested solutions.

The authors use a greedy algorithm to assign each concrete operation to an operator

respecting the constraint and then build the schedule for query processing. This algorithm

is executed several times to generate several schedules. A filter operation will then choose

the best of those schedules corresponding to the parameter to optimize and the given

constraints. Given a number of operators with which the schedule can be built, the main

steps to build this schedule are the following:

1. Get an operator to schedule.

25

2. Find operators ready for allocation (i.e. operators that are not dependent on

other operators).

3. Gather all the operators that respect the constraints.

4. Choose the operator to add to the schedule based on the criteria such as balance

container utilization, minimized network traffic, minimized completion time,

etc…

5. Remove the operator from the list of ready operators.

6. Add the new ready operators to the ready list (i.e. the operators that were

dependent on the chosen operator).

7. Insert the new operator into the schedule.

8. If there are still operators to schedule, go to step 1. Otherwise, start the

Schedule Duration Estimation algorithm which will determine how much time

and how much money the schedule costs.

After several iterations of this algorithm, it will be possible to determine the best

schedule for the computed estimation. Even though estimates are not accurate, the chosen

plan will be either the least expensive or close to the least expensive one, for the given

constraints [20].

2.4 Conclusions

This chapter defines the ins and outs of semantic caching and shows the different

works that can be used in order to integrate them with our algorithm. [14] defines very

detailed and efficient algorithms for query trimming, which allow us to understand the

different steps of semantic caching associated with the formal definitions of this structure

26

given by [6] and [11]. With those definitions we can better understand the limitation of

this architecture and algorithm, mainly in the cases of cache extended hit and partial hit.

Indeed, in some conditions, there might be too much computation to process the query on

the mobile device which can cost time and energy. Thus processing the query on the cloud

may reduce this overhead. However, we still need to take into account the user

constraints, especially on money, since processing queries on the cloud can be expensive.

In addition, we explained the notions of implication and satisfiability given by [18] and

used in the algorithm defined in [14] which are essential to understand how each input

query can be compared with the queries in the query cache in order to know if a cache

hit, a cache partial hit, a cache extended hit or a cache miss occurred. This chapter also

presents the knowledge necessary to understand how to optimize queries in a general

case, then on the cloud in order to pinpoint where optimizations need to be made and to

understand the global optimization process in the mobile-cloud architecture. However,

the way to estimate the cost to process a query on the mobile device still need to be

determined.

27

Chapter 3: Proposed Solution and Architecture

In this chapter, we present our architecture and algorithm, called MOCCAD-

Cache, to process queries while respecting user constraints in terms of time, energy and

money. This algorithm contains the management of the different estimation computations

and estimation caches, in addition to the already existing concepts of semantic caching

presented in Chapter 2.

3.1 Cost Estimation on the Mobile Device

Chapter 2 presented the existing work on the cost estimation related to the process

of a query on the cloud. This subsection now aims to describe the cost estimation related

to the mobile device.

3.1.1 Cache Analysis Cost Estimation

The execution of the query trimming algorithm presented in Section 2.1, can be

expensive. Indeed, we realize that the execution time and the energy consumption are

already impacted during this cache analysis step. Therefore, regarding the different

information items provided by the input query, it is possible to determine if there is a

sufficient amount of energy and if it respects a minimum amount of time necessary for

the cache analysis.

The idea for the energy and time estimation during the cache analysis is to

compute statistics at the first launch of the application. Those statistics contain the time

and the energy spent regarding the number of inequalities within the predicates of each

cache entry. Let ti be the necessary amount of time to analyze the semantic region i in the

cache and ei be the necessary amount of energy to analyze the semantic region i. Let n be

28

the number of segments in the cache. The minimum amount of time necessary for the

cache analysis is:

 𝑡𝑚𝑖𝑛 = ∑ 𝑡𝑖

𝑛

𝑖=1

 (15)

 Indeed, the worst case corresponds to the cache miss, where all the semantic

regions are analyzed without finding any result. Thus, this is the minimum amount of

time under which the user cannot process a query.

 Identically, for the energy we have:

 𝑒𝑚𝑖𝑛 = ∑ 𝑒𝑖

𝑛

𝑖=1

 (16)

3.1.2 Query Processing Cost Estimation on the Mobile Device

It is necessary to determine the time and the energy consumption needed for the

query to be processed on the mobile device. This estimation depends mainly on the type

of event that occurred during query trimming. Indeed, if a cache hit occurs, we consider

that retrieving the query result is negligible in terms of time and energy consumption.

Also, in the case of a partial cache hit, the time and energy to process the query is

considered negligible in this first version of our algorithm. Indeed, certain types of

semantic cache like the one from [14] carry on analyzing the cache with the remainder

query. It is possible in this case to have several cache entries to evaluate while processing

the probe query, which would consequently increase the processing cost. In the case of a

cache miss, the time and the energy necessary for the query analysis has been consumed,

and it is mandatory to process the query on the cloud. Therefore, no cost is taken into

account to process the query on the mobile device. Finally, the cache extended hit can be

a little bit more complex. In the case where the input query is equivalent to the one from

29

the cache, the time and the energy necessary to load the query in the cache have mainly

been consumed during the analysis of the cache. Evaluating the query to retrieve the result

from the given cache region is considered negligible. However, if the input query implies

the semantic region’s query, then the query result is included inside the semantic region’

set of tuples. It is therefore necessary to evaluate the query on each of the tuples contained

in this set. The complexity of this type of evaluation depends mainly on the data structure

used to store the tuples within the cache [19], as well as on the presence or not of indexes

for the attributes that belong to the input query predicates [20]. In this first version of the

proposed algorithm, the tuples are stored randomly in a contiguous list. It will therefore

be necessary to check serially each tuple to see if it satisfies the input query predicate.

The complexity of this operation T(n), with n being the number of tuples and Tanalyze_tuple

the number of operations to analyze a tuple, is:

 𝑇(𝑛) = 𝑛 × 𝑇𝑎𝑛𝑎𝑙𝑦𝑧𝑒_𝑡𝑢𝑝𝑙𝑒 (17)

Tanalyze_tuple can be considered as the number of operations to assign each predicate

attribute with the corresponding tuple attribute in order to check the satisfiability of the

predicate with the given values. The time corresponding to those operations can be

determined statistically by processing queries on several segments of different sizes.

3.1.3 Query Processing Cost Estimation on the Cloud

To estimate the execution time, the energy consumption and the monetary cost to

process a query on the cloud, several possibilities worth considering.

First, it is possible to compute the estimation entirely on the mobile device.

However, this method requires us to keep the metadata of the database hosted on the

cloud updated as well as some information about the different nodes used for the query

30

evaluation. This is therefore both complex due to the number of interactions to have with

the cloud to retrieve those information items, and expensive in time due to the mobile

device’s low power resources. However the monetary cost relative to the computation of

this estimation is negligible since it is done entirely on the mobile device.

Secondly, it is also possible to compute the estimation on the cloud. Indeed, we

ask the cloud to compute the time and the amount of money needed to process the query

on this platform. However, this requires us to use network connection to retrieve the

estimation from the cloud, which uses more energy on the mobile device than the previous

solution [7]. Also, the monetary cost will increase since the estimation is computed on

the cloud servers. The advantage of such a solution is that the estimation is accurate and

that additionally, it consumes less resource on the mobile device which would have been

necessary for the estimation computation.

3.2 Design and Conception of the MOCCAD-Cache Algorithm

 For the algorithm design, the organization of managers presented by [29] is used.

Indeed, this approach divides the cache management into three independent parts (Figure

9):

Cache Manager

Q1 Q3 Q6

Content Manager

Resolution Manager Replacement Manager

Figure 9 - Cache Manager Components

31

 The Cache Content Manager is used to manage the results inside the cache.

It is used for insertion, deletion and look up.

 The Cache Replacement Manager is used to handle the replacement of data

in the cache by some more relevant items. For example, if the used

replacement policy is LRU (Least Recently Used), then the replacement

manager will make sure to prepare the least recent items to be replaced by

the new result. This situation only happens when the remaining cache space

is not sufficient to insert the new query result without removing the old ones.

In order to do this, it will store the dates of each entry or a linked list keeping

every item in the right order.

 The Cache Resolution Manager is used to retrieve the data in the cache as

well as to invoke some external tool to load the missing data items for

example.

Even though each type of cache is a particular case, the organization with

managers allows the important items involved in the algorithm to be modified properly

so that it becomes easier to validate a possible solution for the given problem.

Also, three other types of managers are used in order to handle the computation

of every estimation as well as the elaboration of a better solution. There exists a manager

used to compute the execution time and the energy consumption while executing a query

on the mobile device. This manager is called Mobile Estimation Computation Manager.

There is also another manager used to compute the time, the mobile energy consumption

and the monetary cost necessary to process a query on the cloud. This manager is called

Cloud Estimation Computation Manager. Finally, another piece of the puzzle, the

32

Optimization Manager, needs to take care of the choice between the mobile query

processing estimation and the cloud query processing estimation while respecting the

constraints given by the user. Those constraints can be the remaining battery percentage,

the maximum amount of time and the money to be paid to the cloud service providers for

the query evaluation. Those managers are more accurately described in Section 3.2.2.

Three cache structures, query cache, mobile estimation cache, and cloud

estimation cache, need to be used in order to be able to provide a solution for the given

problem. However, each cache owns its content manager, replacement manager and

resolution manager.

 Query Cache: This cache is used to store the results of the previously executed

queries. The type of cache used for this one is Semantic Caching (Figure 10).

Figure 10 - Query Cache Example

 Mobile Estimation Cache: This cache contains all the estimations corresponding

to the query eventually processed on the mobile device. More specifically, it contains the

execution time and the energy consumption for the query result retrieval within the query

cache. The following figure shows an example of this estimation cache (Figure 11).

33

Query Mobile Estimation

σage=11(Doctor) {1.284s, 0.021mAh}

σyear>2011∧year≤2014 (Project) {1.215s, 0.022mAh}

Figure 11 - Mobile Estimation Cache Example

 Cloud Estimation Cache: This cache contains all the estimations corresponding

to the query if it is processed on the cloud. Even though an estimation belongs to this

cache, it does not mean that the query has been processed yet. The following figure shows

an example of this estimation cache (Figure 12).

 For both estimation caches, only the events of cache hit and cache miss can occur.

Query Cloud Estimation

σage=20(Doctor) {1.463s, 0.283mAh, $0.001}

σyear=2011(Project) {1.535s, 0.290mAh, $0.002}

Figure 12 - Cloud Estimation Cache Example

In order to design an algorithm that can decide whether a query should be run on

the mobile device or on the cloud while consuming a minimum amount of time, energy

and money, it is essential to define all components involved in the problem resolution

process and to know how they interact with each other.

Figure 13 - The four main steps of the query processing algorithm

34

The MOCCAD-Cache algorithm consists of 4 main steps (Figure 13). First we

need to analyze the query cache in order to know what is usable to answer the input query.

Then, depending on the result of the previous step, we may need to estimate the cost to

process a query on the mobile device as well as the cost to process a query on the cloud.

If we have to compute a mobile query processing estimation and a cloud query processing

estimation, then we will need to make a decision upon those estimations and the user

constraints in order to finally evaluate the query. To describe the different activities

happening in each of those steps, the following activity diagram is presented (Figure 14).

35

Figure 14 - Activity Diagram MOCCAD-Cache Algorithm

36

The two sub-processes, Get Mobile Estimation (Figure 15) and Get Cloud

Estimation (Figure 16), describe the process to compute the estimation and store it in the

estimation cache if it is not already contained in it.

Figure 15 - Get Mobile Estimation Sub-Process

Figure 16 - Get Cloud Estimation Sub-Process

37

The following Figure 16 and Figure 17 describe those 4 different steps in details.

Algorithm 1 : CacheManager::load

Input: Query inputQuery, QueryCache queryCache, MobileEstimationCache mobile-

EstiCache, CloudEstimationCache cloudEstiCache,

MobileEstimationComputationManager mobileECompM,

CloudEstimationComputationManager cloudECompM, OptimizationManager oM.

Output: Query Result.

1: mobileEstiResult ← ∞

2: cloudEstiResult ← ∞

3:

4: queryLookup, pQuery, rQuery ← queryCache.lookup(inputQuery)

5: if queryLookup = CACHE_HIT then

6: mobileEstiResult ← 0

7:

8: else if queryLookup = PARTIAL_HIT then

9: estiRemainder ← acquireEstimation(rQuery, cloudEstiCache, cloudECompM)

10: estiProbe ← acquireEstimation(pQuery, mobileEstiCache, mobileECompM)

11: mobileEstiResult ← estiRemainder + estiProbe

12: cloudEstiCache ← acquireEstimation(inputQuery, cloudEstiCache,

cloudECompM)

13:

14: else if queryLookup = EXTENDED_HIT then

15: mobileEstiResult ← acquireEstimation(inputQuery, mobileEstiCache,

mobileECompM)

16: cloudEstiResult ← acquireEstimation(inputQuery, cloudEstiCache,

cloudECompM)

17:

18: else if queryLookup = CACHE_MISS then

19: cloudEstiResult ← acquireEstimation(inputQuery, cloudEstiCache,

cloudECompM)

20: end if

21:

22: bestEstimation, queryPlan ← oM.optimize(queryLookup, mobileEstiResult,

cloudEstiResult)

23: if bestEstimation != NIL then

24: queryResult ← queryCache.process(queryPlan)

25: queryCache.replace(queryResult, queryPlan)

26: end if

27:

Figure 17 – MOCCAD-Cache Algorithm

38

3.2.1 Query Evaluation Preparation

First of all, in order to estimate a query processing cost, it is necessary to

determine how much time and how much energy will be spent to analyze the query cache.

During the cache analysis phase, [18] provides its algorithm complexity needed to know

if the posed query is satisfiable, if the posed query is equivalent to the query in the cache,

if the posed query implies the query in the cache, or if the query in the cache implies the

posed query. This algorithm can be very expensive regarding the number of predicates

contained in both the input query and the query in the cache. In order to estimate the time

and the amount of energy necessary to process this algorithm, it is essential to compute

some statistics for the execution time and the energy consumption regarding the number

of predicates to be analyzed. This should be done only once, when the application is

started for the first time on the mobile device. Indeed, since it depends on the computation

resources specific to the mobile device, we do not need to compute it several times. We

assume that the mobile device has a sufficient amount of energy to compute those

statistics.

Function 1: CacheManager::acquireEstimation

Input: Query query, EstimationCache estimationCache, EstimationComputationManager

estimationCompManager

Output: Estimation estiResult.

1: estiLookup ← estiCache.lookup(query)

2: if estiLookup = CACHE_HIT then

3: estiResult ← estiCache.process(query)

4: else

5: estiResult ← estimationCompManager.compute(query)

6: estiCache.replace(query, estiResult)

7: end if

8: return estiResult

Figure 18 - Acquire Estimation Function

39

Also, during the second phase of the estimation, we will need some additional

pre-processed data. Indeed, even though we have all the information necessary to estimate

the query processing cost on the mobile device, we still need to download some metadata

and information items from the database hosted on the cloud, which are required to

estimate the size of the query result after we processed the query on it: relation name,

number of tuples, average tuple size, maximum tuple size, attribute names, the minimum

value for each attribute, the maximum value for each attribute, and the number of different

values for each attribute. Those information items are downloaded the first time when the

algorithm accesses the database. We assume that the database on the cloud is never

altered.

3.2.2 Inputs

This algorithm first requires the query to be processed as an input. This query, as

we have previously described it, is a selection query (without any projection attributes)

on one relation (no joins). Secondly, this algorithm needs the three different caches: the

query cache, the mobile estimation cache and the cloud estimation cache. Finally it is

necessary to provide the different managers responsible for computing the estimations as

follows:

 Mobile Estimation Computation Manager: it handles the computation of the

estimation corresponding to the query execution on the mobile device. The goal of this

manager is therefore to estimate as accurately as possible the execution time and the

energy consumption to evaluate a query on the query cache. In the case of an exact hit,

these consumed time and energy are considered negligible. Indeed, there is not any

computation to do to retrieve the query result. Also, in the case of a cache miss, none of

40

the tuples in the cache needs to be retrieved. The execution time and the energy

consumption are thus considered negligible as well. When a partial hit occurs, the result

contained in the usable cache entry can be retrieved without any computation. Finally, in

the case of an extended hit, there are two possibilities: either the query corresponding to

the semantic region is equivalent to the posed query or the posed query result is included

inside the semantic region. In the case where both queries are equivalent, the query

evaluation is similar to the cache hit case. The time and the energy in those cases have

already been consumed by the cache analysis. However when the posed query result is

contained in a semantic region, each tuple will be evaluated to see if it satisfies the input

query predicates. At this point the execution time and energy consumption estimation are

involved. The third extended hit case is not handled as explained in the previous section.

 Cloud Estimation Computation Manager: it handles the computation of the

estimation corresponding to the query processing on the cloud. It asks the cloud to

estimate the necessary amount of time and amount of money to process the query on its

servers. Thanks to the downloaded database metadata, it is possible to estimate the size

of the result retrieved from the cloud. Consequently, it is possible to determine the

execution time of this query thanks to the used network bandwidth. Regarding the energy

consumed while using the network, several energy states have been defined in Section

2.2.3, allowing the proposed algorithm to determine the energy consumption from

executing the query on the cloud and retrieving the query result.

 Optimization Manager: the optimization manager is responsible for defining the

query plan from the different estimations computed beforehand and making sure that it

respects the user-specified constraints.

41

3.2.3 Query Cache Analysis

First of all, we analyze the query cache (Line 4 in Figure 17). The query cache

calls its content manager which will return 3 different items:

 The type of cache hit or miss.

 The probe query corresponding to the query is used to retrieve data from

the cache in the case of a partial hit (PARTIAL_HIT). This probe query is

null otherwise.

 The remainder query corresponding to the query is used to retrieve data

from the cloud in the case of a partial hit (PARTIAL_HIT). This remainder

query is null if a partial hit did not occur.

3.2.4 Estimation Regarding the Query Cache Analysis Result

This subsection describes the different steps of the algorithm from Line 5 to Line

20 in Figure 17.

In the case of a query cache hit (CACHE_HIT), the query processing cost on the

mobile device is considered negligible. Therefore, the query will be directly executed on

the mobile device to retrieve the result.

In the case of a partial hit (PARTIAL_HIT), it is necessary to estimate the cost to

process the probe query on the mobile device as well as the cost to process the remainder

query on the cloud. Those two estimation need to be added to get the estimated cost to

retrieve the complete result. Additionally, we need to compute the estimated cost to

process the whole input query on the cloud. To acquire such estimations we use the

function define in Figure 18. This function looks for those estimations in the cloud or

mobile estimation caches (Figure 18 – Line 1). If they are not available in those caches,

42

then the estimation is computed thanks to the estimation computation manager and the

estimation cache calls its replacement manager to insert the new estimation into the cache

(Figure 18 – Line 4 to Line 6). This way, even though the query is not executed, the

estimation still belongs to the cache. This works the same way either for the cloud

estimation cache or for the mobile estimation cache.

In the case of a cache extended hit (EXTENDED_HIT), it can be very expensive

to process the query on the mobile device; it is therefore important to compute the

estimation before this execution. Additionally, we estimate the costs regarding the

execution of the query on the cloud in order to decide whether the query should be

executed on the mobile device or on the cloud.

 Finally, in the case of a cache miss (CACHE_MISS), the algorithm computes the

costs to process the query on the cloud to be sure they respect the user constraints.

3.2.5 Decision

This subsection describes the decision making part (Line 22 in Figure 17).

Once the estimations have been computed, it is now possible to make a decision

of whether the query should be processed fully on the mobile device, the query should be

processed fully on the cloud, or a part of the query should be processed on the mobile

device and a part of the query should be processed on the cloud. A corresponding query

plan (queryPlan) is then generated for the query. For instance, in the case of a partial hit,

the optimization manager will compare the estimation to process the probe query on the

mobile device and the remainder query on the cloud with the estimation to process the

input query entirely on the cloud. One possibility is to ask for the cloud to return the

estimations for several possible configurations (i.e. 1, 10, 50, 100 small, medium or big

43

instances). This, however, would increase the monetary cost related to the estimations on

the cloud. Thus, we consider that the cloud returns its estimation for the given constraints

that have been given to it, and the mobile device does not need to make any choice upon

that.

3.2.6 Query Evaluation

From Line 23 to Line 26 in Figure 17, the different steps correspond to the query

evaluation part.

If it is possible to process the query while respecting the constraints in terms of

execution time, energy consumption and monetary cost, then the query cache

(QueryCache) calls its resolution manager to process the generated query plan and return

the result. The execution time, the estimated energy and the money spent will be updated

in the estimation caches to contain the real values. Then, we use the query cache’s

replacement manager to replace the data within the query cache. If some segment should

be removed from the query cache, the corresponding estimation will be removed in the

mobile estimation cache. We cannot keep this estimation since it is based on the current

segment on which the result can be retrieved. If this segment is replaced by another one

requiring less processing than the first one to retrieve the result, then the estimation is not

accurate anymore. However, a possible solution could be to store this estimation

elsewhere for replacement purposes. Finally, after the replacement, the query result is

sent to the user.

3.3 Algorithm Running Illustration

In order to illustrate the running of this algorithm, we present, in this section,

several examples of the cache behavior in the different possible cases (cache hit, partial

44

hit, extended hit and cache miss). These examples are based on the following entity-

relationship diagram (Figure 19) that represents the organization of a database storing

projects involving doctors and patients.

Figure 19 - Entity-Relationship Diagram for Algorithm Illustration

We also provide some dummy content for the table Patient, Doctor and Project

(Figures 20, 21 and 22):

Project ID Project Name
Project

Department

Project

year

001 Neonatal survival Neonatal care unit 2012

002
Healing time

improvement
Burn center 2014

003
Anxiety disorder

research
Psychiatry 2013

004
Behavioral neuroscience

lab
Psychiatry 2011

Figure 20 - Project Table

45

Doctor ID Doctor Name Doctor Age Doctor Specialty

001 Bert Wade 32 Psychiatry

002 Dustin Rhodes 45 Psychiatry

003 Joy Rodriguez 35 Surgery

004 Jonathan Garrett 48 Neurological

Surgery

005 Lela Holloway 52 Pediatric Medicine

Figure 21 - Doctor Table

Patient ID Patient Name Patient Age Patient Weight

(kg)

001 June Howard 25 85.2

002 Maurice Myers 23 72.8

003 Wilbert Stewart 45 95.6

004 Nora Baldwin 1 10.3

005 Jody Gregory 12 55.0

006 Georges Abidbol 42 72.3

Figure 22 - Patient Table

In order to simplify each example, only the primary keys will be written for the

tuples contained in the query cache. Also the semantic region is presented in its simplest

version. The chosen replacement policy will be LRU. All the following examples are

presented in the chronological order. The estimation values are arbitrary. The user

specifies the following constraints per queries:

𝑡𝑖𝑚𝑒 ≤ 1.5𝑠

𝑚𝑜𝑛𝑒𝑦 ≤ $0.003

𝑒𝑛𝑒𝑟𝑔𝑦 ≤ 0.320𝑚𝐴ℎ

3.3.1 Cache Hit

The input query is the following:

𝜎𝑦𝑒𝑎𝑟=2014(𝑃𝑅𝑂𝐽𝐸𝐶𝑇)

46

The objective parameter chosen by the user is time. The cache content before and

after the query execution is presented in Figure 23. When we look into the query cache,

we find exactly the same query. In this case, the execution time, the energy consumption

and the monetary cost are considered negligible. The decision is therefore easy to make

and the query is executed on the mobile device, that is to say, on the query cache. The

cache does not change since the retrieved query result is already contained in the query

cache.

Figure 23 - Caches' States before and after Cache Hit Example

3.3.2 Cache Partial Hit

The input query is the following:

𝜎𝑤𝑒𝑖𝑔ℎ𝑡≤72.3(𝑃𝐴𝑇𝐼𝐸𝑁𝑇)

The objective parameter to minimize, which is specified by the user, is the time.

The content of the cache before the query execution is presented in Figure 24. In this

47

example, we assume that a query has been posed in order to retrieve all the patients with

a weight of 72.3 kg. The cost estimation to process this query on the cloud is now in the

cloud estimation cache (Figure 24.a) and its result is in the query cache (Figure 24.c).

When we look for the input query in the cache, weight ≤ 72.3 does not imply weight =

72.3. However, weight ≤ 72.3 ∧ weight = 72.3 is satisfiable [18]. Indeed, there exists at

least one value that matches the conjunction of those two inequalities (i.e. a weight of

72.3 kg). Therefore, this corresponds to a partial hit, and two sub-queries are created

thanks to the algorithm presented in [14]. The probe query (𝜎𝑤𝑒𝑖𝑔ℎ𝑡≤72.3(𝑃𝐴𝑇𝐼𝐸𝑁𝑇))

would retrieve the patient(s) in the cache entry corresponding to 𝜎𝑤𝑒𝑖𝑔ℎ𝑡=72.3(𝑃𝐴𝑇𝐼𝐸𝑁𝑇)

on the mobile device, and the remainder query (𝜎𝑤𝑒𝑖𝑔ℎ𝑡<72.3(𝑃𝐴𝑇𝐼𝐸𝑁𝑇)) would retrieve

the right patient(s) from the cloud. Here the remainder query is simplified for illustration

purposes. The remainder query as it is generated by the algorithm presented in [14] would

be represented as 𝜎𝑤𝑒𝑖𝑔ℎ𝑡≤72.3 ∧ ¬ (𝑤𝑒𝑖𝑔ℎ𝑡=72.3) (𝑃𝐴𝑇𝐼𝐸𝑁𝑇).

The probe query estimation is computed because it is not contained in the cache.

This estimation is then stored in the mobile estimation cache. The remainder query

estimation is also computed and stored in the cloud estimation cache for the same reason.

The whole query processing estimation to retrieve the result with the probe query and the

remainder query is equal to the sum of those two acquired estimations. This solution does

not handle parallelism to process the probe query on the mobile device at the same time

that it executes the remainder query on the cloud. The values for the probe query

estimation are the time of 0.480s and the energy consumption of 0.030mAh. The values

for the remainder query estimations are the time of 1.496s, the energy consumption of

48

0.308mAh and the monetary cost of $0.003 Therefore the estimation tuple to process the

whole query is {1.976s, 0.338 mAh, $0.003}.

Figure 24 - Caches' States before the Partial Hit Example

The second possibility is to process the whole input query directly on the cloud.

Since the input query 𝜎𝑤𝑒𝑖𝑔ℎ𝑡≤72.3(𝑃𝐴𝑇𝐼𝐸𝑁𝑇) is not contained in the cache, we also need

to compute the estimation and to store it in the cloud estimation cache. The estimated

costs to process this query are 1.499s, 0.312 mAh and $0.003.

Concerning the estimations to process a query on the cloud, we first retrieve the

time, energy and money used by its services to process this query. Also, we determine

the estimated transfer time thanks to the Formulas 5 to 9 in in Chapter 2. Finally for the

cloud estimation, we determine the amount of energy that would be spent on the mobile

device with the Formulas 11 to 14 in Chapter 2.

The optimization manager will then build a query plan. Here, we can see that the

49

estimation involving query processing on the mobile does not respect the constraint of

energy consumption. Therefore, since running straightly the query on the cloud respects

all the constraints, the optimization manager chooses to build the query plan to process

such a query. The result is then presented to the user. Finally the query result is stored

into the cache and the caches’ content becomes the following (Figure 25).

Figure 25 - Caches' States after the Partial Hit Example and before the Cache Miss

Example

3.3.3 Cache Miss

The input query is the following:

𝜎𝑎𝑔𝑒≤35(𝐷𝑂𝐶𝑇𝑂𝑅)

The content of the cache before the query execution is presented Figure 25. In the

current case, none of the entries in cache can be used to answer to the input query. Hence,

we look for the estimation for the input query inside the cloud estimation cache. Since

there is none, the estimation is therefore computed. The result is the following estimation

50

tuple: {1.503s, 0.305mAh, $0.001}. At that moment, we want to add this estimation to

the cloud estimation cache, but this one is full. We thus replace the oldest estimation in

the cache, assuming that it is using the LRU replacement policy. Then, the optimization

manager fails to generate any query plan since the time estimation does not respect the

time constraint specified by the user. Thus, the query is not processed and nothing is

added to the cache. Figure 26 shows the caches’ states after the execution of this query

and before the next one.

Figure 26 - Caches' States after the Cache Miss Example and before the Extended

Hit Example

3.3.4 Cache Extended Hit

The input query is the following:

𝜎𝑤𝑒𝑖𝑔ℎ𝑡≤55.0(𝐷𝑂𝐶𝑇𝑂𝑅)

The objective parameter to minimize is money. During the cache analysis part of

the query processing algorithm for this input query, we can see that weight ≤ 55.0 implies

51

weight ≤ 72.3. This corresponds to an extended hit. However weight ≤ 72.3 does not imply

weight ≤ 55.0. Hence, the input query and the cache segment query are not equivalent,

which means the result of the input query is included inside the corresponding semantic

region. First of all, we need to compute the estimation to retrieve the tuples which match

the input query predicates since this estimation is not contained in the mobile estimation

cache. We use Formula 7 from Section 3.1.2 in Chapter 2 to compute the estimated

execution time and Formula 15 from Section 2.2.3 in Chapter 2 to compute the estimated

energy consumption. This estimation is stored in the mobile estimation cache. With the

cloud estimation cache being full, we replace the estimation for the query

(𝜎𝑤𝑒𝑖𝑔ℎ𝑡=72.3(𝑃𝐴𝑇𝐼𝐸𝑁𝑇)) with the estimation for the query (𝜎𝑤𝑒𝑖𝑔ℎ𝑡≤55.0(𝑃𝐴𝑇𝐼𝐸𝑁𝑇)).

Let’s assume that the costs to process the query on the cloud are the following: 1.450s for

the execution time, 0.300mAh for the energy consumption and $0.002 for the monetary

cost. Let’s assume that the costs to process the query on the mobile device are the

following: 1.200s for the execution time and 0.020mAh for the energy consumption.

Since the mobile device estimation is better than the cloud estimation in terms of

monetary cost (the chosen objective parameter to minimize), and that it takes less than

1.5s, consumes less than 0.320mAh and cost less than $0.003, the optimization manager

will create the query plan to process the query on the mobile device. Since the query has

been processed on the mobile device, we do not add an entry in the cache to store the

result because the tuples are already contained in another segment in the cache. The result

is then given to the user. The content of the cache after this query has been processed is

shown in Figure 27.

52

3.4 Conclusions

In this chapter we described the proposed algorithm, MOCCAD-Cache, that can

make a decision of whether or not a query should be run regarding the estimations and

the user constraints, and also where, on the mobile device or on the cloud, it should be

ran. In order to be able to maximize the number of queries which respect their user

constraints, we want to use as much as possible the query cache to retrieve less data from

the server and thus, reduce the amounts of time, energy and money to get the query result.

This is why we use semantic caching in our architecture. However, in some cases like the

cache extended hit, processing a query on the mobile device might be more expensive

than processing the query on the cloud due to the number of tuples which reside in the

cache, the time and energy to analyze those tuples and the low computing resources of

the mobile device compared to the cloud. Therefore, we compute the cost estimations to

Figure 27 - Caches' States after the Extended Hit Example

53

make a decision of whether to run the query on the mobile device or on the cloud based

on the user constraints. Those user constraints need to be respected, and the query

processing estimations allow us to make sure of this before we launch the execution.

However, computing an estimation requires time and adds an overhead to the query

process, which led us to use the estimation caches in order to reduce this overhead over

time.

54

Chapter 4: Experimentation and Results

This chapter describes the experiments evaluating the performance of the

MOCCAD-Cache algorithm. It details the design and implementation of the prototype,

and presents the experiment model, the generation of test data and finally the performance

results.

4.1 Prototype

4.1.1 Environment

The MOCCAD-Cache algorithm as well as all the associated algorithms Guo et

al. [18] and Ren et al. [14] have been implemented on Android [30]. Android is an open

source operating system created by Google. It is based on a Linux kernel, and works on

several mobile devices such as smart-phones and tablets. It can also be found in

televisions, watches and cars. Android applications are developed in Java and use the

virtual machine Dalvik, which allows such applications to be deployed on many devices.

The Android current version is Android Lollipop 5.0 but the prototype created for this

experimentation has been developed on Android Kit Kat 4.4.3. All the experiments have

been run on a HTC One M7ul (Figure 28) embedding a Qualcomm Snapdragon 600 with

a 1.728 GHz CPU, 2GB of RAM and a battery capacity of 2300 mAh.

55

Figure 28 - HTC One M7

On the cloud side, a private cloud from the University of Oklahoma has been used.

It uses one node with the following configuration: 16GB of RAM, Intel Xeon CPU E5-

2670 at 2.60 GHz. A Hadoop framework (Version 2.4.0), as well as the data warehouse

infrastructure, Hive, have been used for this experimentation. This cloud infrastructure

can be accessed through a RESTful web service running on tomcat server (Version 7.0).

The web service can ask the cloud to estimate the cost of a query, and to process a query

on the cloud infrastructure thanks to HiveQL, It can also return the metadata items related

to the stored relation(s) thanks to the Hive Metastore. This Hive Metastore uses a MySQL

Server (Version 5.1.73) to store the metadata.

4.1.2 Project Organization

The implementation of the prototype on the mobile device is divided into 2 parts:

 AndroidCachePrototype: the Android application allowing the user to

build the queries, specify constraints, and view the statistics on previously

run queries.

 CacheLibrary: the library used by the Android application. It defines

classes and methods allowing the application to load queries into a chosen

56

type of cache. The implementation of the MOCCAD-Cache algorithm is

available in this library.

The AndroidCachePrototype subproject uses different classes and methods from

the CacheLibrary project in order to use the caching data structures as well as estimate

and optimize query processing.

4.1.3 Design and Implementation

Figure 29 - Cache Managers UML Class Diagram

Figure 29 shows the class diagram representing the content of a cache and its

different cache managers. A Cache instance is created thanks to a Cache builder pattern

57

allowing to specify different parameters and managers such as a CacheContentManager

instance, a CacheReplacementManager instance, a CacheResolutionManager instance,

the maximum number of segments and the maximum size of the cache. As shown on the

diagram, several implementations of the different managers have been done and can be

given to the Cache builder in order to build the Cache instance. The

CacheContentManager class and the CacheResolutionManager class are inherited by two

different managers and instantiated regarding the type of cache it uses. In the built system,

a query cache and an estimation cache can be used and can be managed in different ways.

Concerning the cache replacement manager, only one specialization is needed for now

since the different caches only use the LRU replacement policy.

Figure 30 shows the possible query processors that can be used. A query processor

owns a data access provider allowing it to connect with a server able to return some data.

For example, in this experimentation, it is used to send queries to a Web Service (aka the

data owner) in order to process the queries in a cloud.

The prototype provides the user with different features such as creating a new

query, viewing the result tuples, viewing the different caches, viewing the already

processed queries and modifying the settings (constraints, types of caches,

experimentation options, etc…). To build a new query, the user can use the interface in

Figure 31.a.

58

Figure 30 - Query Processors UML Class Diagram

59

The user can specify a table and add different predicates being {X op C} or {X

op Y} predicates. To process the query, the user pushes the “Launch” button. The waiting

message appears while the query is being processed (Figure 31.b). When the result

appears, the user can see the result as a list (Figure 31.c). Each tuple can be displayed by

accessing a more detailed view when clicking on the list item.

 Figure 32 represents the Settings Activity. It is the interface the user can use to

specify the type of cache to be used, the web service to be accessed or if the result should

be replaced in the cache in the case that the cache’s maximum size is reached (Figure

32.a), constraints, the parameter to minimize during optimization (processing time,

energy consumption or monetary cost) or the number of queries to processed for each

experimentation (Figure 32.b) and the maximum sizes of the different caches (Figure

32.c). Every time the data access manager is modified in the settings, the application

automatically asks for the new metadata to the new chosen web service. The user can also

view the queries he has already processed and the content of each cache.

Figure 31 - Query Processing on the Prototype

60

4.2 Experimentation

To be able to validate the proposed algorithm, several types of experiments have

been run using the developed prototype. The experiments aim to compare the existing

semantic caching algorithm as defined in [6], a system without cache and the proposed

Figure 33 - Processed Queries and Cached Items on the Prototype

Figure 32 - Settings on the Prototype

61

semantic caching algorithm involving decision making and the estimation cache:

MOCCAD-Cache.

4.2.1 Experimentation Context

To analyze the efficiency in terms of time, energy and money for the proposed

algorithm, it needs to be compared to the existing Semantic Caching algorithm in suitable

conditions. The mobile device and the cloud configuration used for the different

experiments are the same as the ones used with the prototype. The database stored on the

cloud is generated using a relation generator developed in C#. To generate a relation, this

generator takes as an input a relation schema with the type of each attribute as well as its

distribution and output a file which can be easily imported with Hadoop to build the

dataset in HDFS.

 Figure 34 shows the cloud architecture that has been set up for experimentation

purposes. It is made of a RESTful Web Service used as a middleware between the mobile

device and a Hive Server used to manage query processing on the cloud. A RESTful Web

Service follows the REpresentational State Transfer software architecture. This

architecture gathers some principles allowing to make the web service adaptable and

RESTful Web Service

Hive Server

1

5
2 4

3

Figure 34 - Cloud Architecture for Experimentation

62

scalable to a high number of clients. Hive Server is a service allowing to receive HiveQL

queries in order to process them on top of the Hadoop Framework. The following steps

describe how this architecture works, and the different requests it can receive.

 1: Request reception: The web service receives GET requests to require some

information. The client (i.e. the mobile device) can request the dataset metadata, a query

estimation or a query result. The query is specified in the URL as a SQL query.

 2: The request is parsed and one or several consequent requests are sent to the

Hive Server to build the result. If the client asked for the metadata, several requests will

be sent to the Hive Server to retrieve information such as the number of tuples in the

dataset, the maximum and the minimum for each attribute, etc. If the client requested an

estimation, the web service will process the query several times on the Hive Server, and

will store the average processing time within a collection of estimations. If the estimation

is asked again for the same query, it will return the result directly. The goal of this process

is to simulate a real estimation made on the cloud. Of course, it is necessary to compute

all those estimations before every experiment in order to make this simulation realistic.

If the client asked to process a given query, then this query is transformed in the HiveQL

language and sent to the Hive Server. In the current implementation, no translation is

needed from the original SQL query since HiveQL follows the SQL-92 standards. In

further implementation, it could be envisioned to receive requests in other high level

languages (i.e. Pig Latin).

 3: The different queries sent from the web service are processed on the dataset in

order to retrieve the result. The dataset schema is detailed in Table 3.

63

 4: The retrieved result is sent back to the web service. It is then serialized under

the JSON format. In the case of a query processing request, the time and money spent is

also added to the query result. Since the monetary cost is also simulated, a simple cost

model has been used to return the monetary cost regarding the processing time. In those

experiments, it corresponds to the following formula:

 𝐶 = 𝐶𝑖 ∗ 𝑛 ∗ 𝑡 (18)

 With:

 Ci: the monetary cost per hour in dollars and per instance, admitting that

we use only one type of instance,

 n: the number of instances (several instances can be simulated by simply

dividing the processing time on one instance by the number of instances).

 t: the time in hours

 5: The serialized request result is finally sent back to the client.

Table 3 - Experimentation Table Schema

Attribute

Name
Type

Minimum

Value

Maximum

Value
Distribution

Id big integer 1

{Number of

tuples in the

relation}

Sequential

Name string
Normal (mean=15,

variance=5)

Info string
Normal (mean=15,

variance=5)

Intattr1 integer 0 10000 Uniform

Intattr2 integer 0 50000 Uniform

Intattr3 integer 0 100000 Uniform

Table 3 presents the relation used for the different experiments. This relation

contains mainly integer attributes in order to respect more easily the constraints brought

64

by the satisfiability and implication algorithm [18]. The string values contain only letters

from a to z in lower cases. A query generator can also create a set of queries matching

different criteria such as the type of attribute used in the predicates, the maximum size of

the query result and the number of queries to be generated. Once those queries are

generated, they are analyzed and sorted out as exact hits, extended hits or partial hits for

a given set chosen as the query cache content. Finally, the queries are gathered into

different query sets and used to analyze the performance of our algorithm.

4.2.2 Performance Metrics

The goal of the different experiments is to measure the performance of the

MOCCAD-Cache algorithm based on different metrics:

Total Processing Time:

When testing a cache algorithm used within a query processing system, the goal

is to show its efficiency in terms of time. Indeed, in our algorithm, since some decisions

have to be made before processing a query, and those decisions can have some overhead,

it is important to verify that these decisions impact the total time to process a query. Of

course, depending on the type of cache hit the decisions are not the same. Therefore, the

overhead can be different and the difference in term of improvement relatively to other

algorithms needs to be analyzed.

Total Monetary Cost:

 Time, however, cannot be studied by itself. Indeed, one can think that since

processing a query on the mobile device does not cost any money, it is always better to

process it on the cache. That is true if we consider only money. Nevertheless, we could

indeed imagine that one just pays for a very powerful cloud infrastructure, and would

65

succeed in processing queries way faster on the cloud than on the mobile device

(assuming that the result is available at both places). Thus, the MOCCAD-Cache would

be efficient in terms of time since it would allow the user to take advantage of its efficient

cloud. However, it is not efficient in terms of money cost since a lot of money would have

been spent for an improvement in time efficiency that might not be much comparing with

a standard semantic caching algorithm. Consequently, it is more about observing the total

monetary cost that would bring some time efficiency compared to other cache algorithms

than observing money or time by itself.

Total Energy Cost:

The goal of our algorithm is also to be aware of energy. When the algorithm finds

that the cloud might be more efficient to run a query in terms of time, it is likely the

algorithm might cost more energy due to the energy consumed by the mobile device when

it uses network compared to when it processes operations locally. However in some cases

where, for example, the computation on the mobile device is tremendous, retrieving only

a few data items from the cloud can be cheaper in terms of energy. Here again, the query

would also be more expensive and can also be slower to process.

In order to control every experiment to be able to analyze the result, Table 4 and

Table 5 list the different parameters used in the experiment. The static parameters table

contains all the parameters which will not be modified throughout each experiment. It

specifies the currents for each state of each component. Those parameters can be found

on an Android device via a Power Profile. The average bandwidth needs to be measured

right before an experiment so that the estimations related to processing queries on the

cloud get as realistic as possible. Concerning the exp_table table, the maximum tuple size

66

is retrieved from the web service each time the data access provider is modified in the

settings. This tuple size is used to estimate the total size of a query result and thus the cost

to retrieve it from the cloud to the mobile device. In order to control this experiment, the

number of attributes in each predicate and the number of inequalities are defined for every

query in each query set used for the experiment. For example, using a random number

for the number of inequalities can cause some experiment query set to be much different

than others in terms of cache analysis. Indeed, let us assume that one experiment’s query

set has an average of 10 inequalities per query whereas another one has an average of 5

inequalities per query. In this case it can be difficult to analyze any result since in the first

case, the time spent for the cache analysis can be more important. Even though the cache

analysis time relative to the whole processing time is small, some other parameters such

as the size of the result (Query Size, Table 5) can bring some variation as well. Therefore,

making this parameter static makes the analysis of the result easier.

Table 5 specifies the different parameters that will be varied in different

experiments in order to study their impacts on the performance of the MOCCAD-Cache

algorithm.

67

Table 4 - Static Parameters

Static Parameter Value(s) Reference

SoC CPU Active Mode

Freq
1.728 GHz Kernel

SoC CPU Active Mode

Current
162.00 mA Power profile

SoC CPU Idle Mode Freq 0 Kernel

SoC CPU Idle Mode

Current
2.52 mA Power profile

SoC Wi-Fi Network Low

Current
3.6 mA Power profile

SoC Wi-Fi Network High

Current
74 mA Power profile

Battery Capacity 2300 mA Power profile, HTC

Number of Instances

Simulated on the Cloud
5

Average Bandwidth (to be

measure right before

experimentation)

15Mbps/14Mbps
Speedtest Android

Application…

Maximum Tuple Size 49 Bytes
Computation on

exp_table table

Number of different

variables in each predicate
1

Number of inequalities in

each predicate
2

Maximum Number of

Cache Entries in Query

Cache

10

Maximum Number of

Cache Entries in

Estimation Cache

+Inf

Query Cache Maximum

Size
100 MB

Mobile Estimation Cache

Maximum Size
10 MB

Cloud Estimation Cache

Maximum Size
10 MB

Query Set size 50 queries

Number of Relations 1

Relation Size 200,000

68

Table 5 - Dynamic Parameters

Parameter Value Range Default Value Reference

Cache types
{No Cache, Semantic

Cache, MOCCAD-Cache}

MOCCAD-

Cache

Query Size (%

of the relation)
[0%;75%] N/A

Phone constraint

on the maximum

heap size

available per

application

(200 MB)

Query Cache

Exact Hit

Percentage (%)

[0%;100%] for each 10% 0%

Query Cache

Extended Hit

Percentage (%)

[0%;100%] for each 10% 0%

Query Cache

Partial Hit

Percentage (%)

[0%;100%] for each 10% 0%

In order to study the performance of the MOCCAD-Cache in each case where we

can use some result from the cache, the different experiments aim to measure the total

processing time, the total monetary cost and the total energy consumption for each

percentage of exact hit, extended hit and partial hit on the query cache. This experiment

is made on a query processor without cache, a query processor with a semantic cache,

and a decisional semantic cache (MOCCAD-Cache). For each experiment, three runs

have been done in order to minimize the environment noises such as Wi-Fi throughput

variations, cloud computation time variation, and mobile processing time variation.

Table 6 presents the size of each query contained in the cache for all the presented

experiments. The query results contained in cache do not overlap.

69

Table 6 - Cached Queries' Result Size

Cached Queries

Approximated

Result Size (Number

of Tuples)

Percentage of

the relation

SELECT * FROM exp_table WHERE id >= 0 AND id <= 94256; 94257 47.12 %
SELECT * FROM exp_table WHERE id > 166258 AND id <= 199523; 33265 16.63 %
SELECT * FROM exp_table WHERE intattr1 > 9554 AND intattr1 <= 10000; 9820 4.91 %
SELECT * FROM exp_table WHERE intattr1 >= 1234 AND intattr1 <= 2326; 21860 10.93 %
SELECT * FROM exp_table WHERE intattr2 >= 3250 AND intattr2 <= 4465; 4864 2.43 %
SELECT * FROM exp_table WHERE intattr2 >= 42640 AND intattr2 < 48256; 22464 11.32 %
SELECT * FROM exp_table WHERE intattr3 > 75414 AND intattr3 < 80000; 9170 4.58 %
SELECT * FROM exp_table WHERE intattr3 > 42 AND intattr3 < 15564; 31044 15.52 %
SELECT * FROM exp_table WHERE intattr1 >= 1000 AND intattr1 < 1233; 4660 2.33 %
SELECT * FROM exp_table WHERE intattr2 >= 63 AND intattr2 <= 100; 152 0.08 %

4.2.3 Results

This subsection shows the results acquired from the experiments ran with the

different metrics discussed in the previous section. It validates the proposed solution by

showing that MOCCAD-Cache improves the processing time but however is more

expensive in terms of monetary cost when the objective is to minimize time. Due to

experimental issues and consequently a lack of time, no experiments have been done to

show that with MOCCAD-Cache, the user can also choose to minimize monetary cost.

Some points are however discussed towards this aspect.

4.2.3.1 Impact of the Exact Hit Percentage on the Query Cost

In order to study the performance of the MOCCAD-Cache regarding the exact hit

percentage on the query cache, it is necessary to fix the database relation to be used. As

specified in Table 5, the exp_table relation stores 200,000 tuples. Then 10 queries are

chosen to warm up the query cache before this experimentation. No replacement is being

done during the experimentation. 10 query sets are generated containing fifty queries to

be processed so that they match each percentage of cache exact hit and cache miss. Each

query set owns a percentage of queries matching an exact hit and a remaining percentage

70

of queries matching a cache miss. For example when the set of queries needs to match

50% of exact hit on the query cache, there are 25 queries matching an exact hit and 25

queries matching a cache miss. The estimation caches are also warmed up before the

experiments.

Figure 35 - Approximated Total Result Size per Query Set Regarding the Cache

Exact Hit Percentage

Figure 35 shows the total result size for each query set. Indeed, by computing the

size of each query (the same way it has been explained in section 2.2.1), the total result

size per query set can be shown. For example, when 0% of the query set match an exact

hit, processing all the query set corresponds to the retrieval of approximately 1.82 Million

tuples. In blue, the result size corresponding to the queries matching an exact hit increases

when the percentage of exact hit goes up. In Orange, the result size corresponding to the

queries matching a cache miss decreases when the percentage of cache miss goes up. The

71

total result size per experiment, however, globally decreases when the percentage of exact

hit increases. This chart can be used to analyze the results of the query costs and

potentially be able to deduce some trending on this cost regarding the cache hit

percentage. This decrease in size is due to the fact that the queries matching an exact hit

and a cache miss do not have the same average result size. This is related to the queries

chosen as cached queries (Table 6). For example, an exact hit cannot match more than

47.12 % of the relation. However, a cache miss can match a maximum of 99.92 % of the

relation.

Figure 36 - Processing Time for Fifty Queries Regarding Cache Exact Hit

Percentage

Figure 36 shows the average processing time for each experimentation. On this

chart we can observe that the two curves corresponding to the semantic caching algorithm

and the MOCCAD-Cache algorithm overlap. For those two curves, the processing time

decreases linearly when the percentage of exact hit increases. The third curve, describing

72

the processing time in the case where there is no cache, decreases a bit and can be

explained by the global diminution in the total result size presented in Figure 35.

 When using semantic cache or a MOCCAD-Cache, the processing time regarding

the percentage of exact hit is similar since in both cases no estimation is being made and

the query is being processed directly on the mobile device when this query matches an

exact hit. Thus, semantic cache and MOCCAD-Cache are as efficient in the case of an

exact hit in terms of processing time.

Figure 37 - Energy Consumption for Fifty Queries Regarding Cache Exact Hit

Percentage

Figure 37 presents the variations of energy consumption regarding the cache exact

hit percentage and follows more or less the variations of processing time regarding the

cache exact hit percentage and can also be explained by the similarity of the semantic

caching and the MOCCAD-Cache algorithms in this situation. Also, the energy spent in

the case where no cache is being used decreases and depends as well on the processing

73

time. Therefore, semantic caching is similar to MOCCAD-Cache concerning energy

consumption regarding the percentage of exact hit.

Figure 38 shows the money spent for fifty queries regarding the query cache exact

hit percentage. Here again, the semantic cache and the MOCCAD-Cache are similar in

terms of money cost and decrease when the percentage of exact hit increases since less

queries are processed on the cloud in both cases.

Figure 38 - Money Cost for Fifty Queries Regarding Cache Exact Hit Percentage

When there is no cache the money spent remains approximately the same all along

the experiments. This is explained by the fact that the total processing time on the cloud

remains also the same for the experimentation (Figure 39) due to the used cost model

exposed in Section 4.2.1.

Finally, we can see that the MOCCAD-Cache algorithm is as efficient as the

semantic cache algorithm in the case of a query cache exact hit. This is allowed by the

74

estimation cache which prevents the overhead of computing an estimation for the

experiments’ cache miss queries.

Figure 39 - Cloud Processing Time for Fifty Queries Regarding Cache Exact Hit

Percentage

4.2.3.2 Impact of the Extended Hit Percentage on the Query Cost

With the same approach than exact hit, a 200000-tuple database is being used.

Also, the same ten queries are used to warm up the cache. No replacement in the query

cache is done during the experimentation. The query sets are also built so that they match

the percentage of cache extended hit as well as the remaining percentage of cache miss

against the given query cache. The estimation caches are also warmed up by

preprocessing those queries.

Figure 40 shows the total result size for each query set. For the given query sets,

the size of the query sets corresponding to the extended hit queries, in blue, increases

linearly. In orange the size of the query sets corresponding to the cache miss queries

75

decreases linearly. Also, the total query size globally decrease when the extended hit

percentage increases.

Figure 40 - Approximated Total Result Size per Query Set Regarding Cache

Extended Hit Percentage

Figure 41 shows the processing time regarding the query cache extended hit

percentage when there is no cache (blue), a semantic cache (orange) or our MOCCAD-

Cache (green). When no cache is being used, the processing time decreases following

the total result size of the used query sets (Figure 40). The processing time, when using a

semantic cache, decreases faster than when no cache is being used. Indeed the processing

time follows the decrease in the total result size for the query cache misses but also uses

some processing time for the extended hit queries processed on the mobile device.

Therefore, it takes additional time to process the queries when no cache is used compared

to the semantic cache and the MOCCAD-Cache.

76

Figure 41 - Processing Time for Fifty Queries Regarding Cache Extended Hit

Percentage

When using our MOCCAD-Cache, the processing time also logically decreases

regarding the percentage of extended hit. However, we can see that the processing time,

when we use MOCCAD-Cache, is globally reduced compared to the processing time

when using a semantic cache. This can be explained by looking at Figure 42 which shows

the percentages of queries that are processed on the cloud regarding the percentage of

extended hit. Indeed, we can see that with a semantic cache, all the queries matching an

extended hit are processed on the mobile device. However, we can see that with

MOCCAD-Cache, more queries are processed on the cloud than with a semantic cache

(Figure 42). This shows that the MOCCAD-Cache’s optimizer decided to reprocess some

queries on the cloud rather than processing them on the mobile device after it computed

the different estimations. This can thus explain the globally lower processing time when

using the MOCCAD-Cache than when using semantic caching.

77

Figure 42 - Percentages of Queries Processed on Cloud Regarding Cache Extended

Hit Percentage

Figure 43 - Energy Consumption for Fifty Queries Regarding Cache Extended Hit

Percentage

Figure 43 shows the variation of energy consumption regarding the cache

extended hit percentage. When using a semantic cache, the energy decreases regarding

78

the percentage of extended hit. This is explained by the fact that less queries are processed

on the cloud when the extended hit percentage increases. Indeed, using the network

interfaces is expensive in terms of energy consumption since it can take some time to

download the result, and that energy depends on that time (Formula 13). In addition, even

though more queries are processed on the cloud with MOCCAD-Cache when the

extended hit percentage increases (Figure 42), the energy spent when using MOCCAD-

Cache tends to be similar to the energy spent when using a semantic cache. This is

explained by the fact that the queries that are chosen to be reprocessed on the cloud do

not retrieve a lot of data (Figure 44). Thus, by looking at the current used for each state

in Table 4, we can see that the current to download data from the cloud (SoC CPU Active

Mode Current) is lower than the current to process operations on the mobile device (SoC

Wi-Fi Network High Current). This shows that if query result size is low, the time and

the energy consumption to process and download data from the cloud can be lower than

processing a huge segment, as discussed in Chapter 2. Therefore, Figure 43 and Figure

44 show that the energy consumption is saved by processing queries with small results

on the cloud. When no cache is being used, all the queries are processed on the cloud.

Therefore, the curve corresponding to this situation is above the others in Figure 43

meaning that not using a cache consumes more energy when the percentage of extended

hit increases.

79

Figure 44 - Total Result Size of Queries Reprocessed on Cloud Regarding the

Percentage of Extended Hit

Figure 45 - Money Cost for Fifty Queries Regarding Cache Extended Hit

Percentage

80

Figure 45 shows the money spent for fifty queries regarding the percentage of

extended hit. When no cache is being used, all the queries are processed on the cloud

(Figure 42) and thus becomes expensive in terms of monetary cost. When a semantic

cache or MOCCAD-Cache is being used, the amount of energy spent on the cloud is

reduced. However, MOCCAD-Cache tends to consume a little bit more money than a

semantic cache when the percentage of extended hit increases. Indeed, since more queries

are processed on the cloud when using the MOCCAD-Cache (Figure 42), the amount of

money spent is also increased when compared to the monetary costs while we use a

semantic cache.

Figure 46 - Percentages of Queries Processed on the Cloud Regarding Cache

Extended Hit Percentage with Money Constraint

In addition of minimizing the processing time with the considered parameters, we

have added a money constraint of $0.015 per query. When MOCCAD-Cache estimated

the possible costs to process the query, and that it occurred that none of the possibility

met the user’s money constraint, then the query is not processed. Figure 46 shows the

81

percentages of queries that have been processed on the cloud with Semantic Caching and

with MOCCAD-Cache as well as the percentage of queries that have been chosen not to

be processed at all with the MOCCAD-Cache. We can see that with the semantic caching

algorithm, all the queries matching a cache miss are processed on the cloud and the

queries matching an extended hit are processed on the mobile device. This result is

exactly the same as the one showed in Figure 42. However with MOCCAD-Cache, some

queries matching an extended hit, are processed on the cloud (100% extended hit) and

some queries are not processed because they have been foreseen not to respect the user’s

constraints.

Figure 47 - Percentages of Queries not Meeting the Money Constraint Regarding

Cache Extended Hit Percentage

After processing the queries, Figure 47 demonstrate that MOCCAD-Cache can

take into account the user constraints whereas a standard semantic caching algorithm is

unable to do the same. Indeed, Figure 47 shows that much more queries do not respect

82

the user’s constraints with semantic caching whereas only a few of them do not respect

the user’s constraints with MOCCAD-Cache. Those few errors are due to the inaccuracy

of the computed estimations. Therefore some queries may have been estimated as meeting

the constraints before query processing but actually did not meet the constraints once

processed with the chosen query plan.

Finally, the MOCCAD-Cache algorithm is more efficient than the semantic

caching algorithm in terms of processing time, remains equivalent in terms of energy, but

however consumes a little bit more money due to the number of queries processed on the

cloud. The close results between the semantic cache and the MOCCAD-Cache can first

be explained by the fact that a small cloud with only 5 instances has been used. If the

cloud gets faster, more queries will be processed on the cloud rather than on the mobile

device. Therefore, the difference between MOCCAD-Cache and the semantic cache

would be more significant. Secondly, the throughput variation between the mobile device

and the cloud can lead the mobile device to process the query on the cloud with the

computed estimation. However, during the execution, the query may take longer to be

processed on the cloud than it would have taken to be processed on the mobile device. If

the user specifies a constraint such as money, our algorithm is able to estimate whether a

given query will meet this constraint and thus decide or not to process it. Considering the

other parameters, if the parameter to be optimized is money, the query will be processed

on the mobile device since it is free of charge.

4.2.3.3 Impact of the Partial Hit Percentage on the Query Cost

Figure 48 shows the total result size of the query sets used for those experiments

regarding the percentage of partial hit. The result size corresponding to the cache partial

83

hit queries, in blue, increases when the percentage of partial hit increases. The result size

corresponding to the cache miss queries, in orange, decreases when the partial hit

percentage increases. The total result size per query set increases when the partial hit

percentage increases.

Figure 48 - Approximated Total Result Size per Query Set Regarding the Cache

Partial Hit Percentage

Figure 49 shows the percentage of queries that have been processed on the mobile

device regarding the cache partial hit percentage. We do not show any results related to

the percentage of queries that have been processed on the cloud since in the case of a

partial hit, there is always a query processed on the cloud. However, it can either be the

input query or a remainder query. From this figure, we can see that as much queries are

processed on the mobile device with a semantic caching algorithm as with MOCCAD-

Cache. This means that the decision process decided that it was always more beneficial

84

to process the probe query on the mobile device and the remainder query on the cloud

rather than processing the whole input query on the cloud.

Figure 49 - Percentages of Queries Processed on the Mobile Regarding Cache

Partial Hit Percentage

Figure 50 presents the processing time for fifty queries regarding the percentage

of cache partial hit queries. When no cache is being used, all the queries are processed on

the cloud. This explains the growth in processing time regarding the cache partial hit

percentage. Concerning semantic caching and MOCCAD-Cache, when the cache partial

hit percentage increases, the processing time increases as well. Indeed this is explained

by the fact that the result size of the cache miss queries are globally bigger than the result

size of the partial hit queries. Even though the MOCCAD-Cache algorithm seems to be

more efficient than the semantic caching algorithm on this graph. However, by looking

at Figure 51, we can see that the downloading time is lower with MOCCAD-Cache than

with the semantic cache, even though it downloads the same amount of data in both cases.

85

Therefore, MOCCAD-Cache and semantic caching should be more considered as

equivalent in terms of processing time.

Figure 50 - Processing Time for Fifty Queries Regarding Cache Partial Hit

Percentage

Figure 51 - Download Time for Fifty Queries Regarding Cache Partial Hit

Percentage

86

Figure 52 - Energy Consumption for Fifty Queries Regarding Cache Partial Hit

Percentage

Figure 52 presents the energy consumption for fifty queries regarding the

percentage of extended hit. Concerning MOCCAD-Cache and semantic caching, because

the result is being downloaded faster from the cloud (Figure 51) regarding the percentage

of partial hit, the consumed energy is thus reduced (Formula 13). When no cache is being

used, more data is being downloaded from the cloud than when using MOCCAD-Cache

or a semantic cache. Thus more time is being taken to retrieve the result. This explains

that the energy consumption curve in the case no cache is being used is above the other

curves. For the same reasons, since more and more data is being downloaded when the

percentage of partial hit increases (Figure 48), the energy consumed is becoming more

important as the percentage of partial hit gets bigger.

87

Figure 53 - Money Cost for Fifty Queries Regarding Cache Partial Hit Percentage

Figure 53 presents the monetary cost for fifty queries regarding partial hit

percentage. We can see that the money spent when no cache is being used is similar to

the money spent when MOCCAD-Cache or a semantic cache is being used. In the three

cases, for each query posed, one query is processed on the cloud. It is either an input

query or a remainder query. Therefore, the difference between the query processor

without cache and the one with a MOCCAD-Cache or a semantic cache is less remarkable

than the difference observed with exact hit queries.

Finally, the MOCCAD-Cache algorithm does not succeed in being better than the

semantic caching algorithm. Indeed, when the cloud can perform fast queries with a high

number of instances, the estimated time and energy is mainly related to the download

time and the size of the result. Thus when a decision needs to be made, the algorithm

chooses to process the query retrieving the least data. This corresponds to the query plan

which process the probe query on the mobile device and the remainder query on the cloud.

88

This query plan is identical to the one used in the semantic caching algorithm and thus,

no improvement is being made.

4.2.3.4 Global Impact of Cache Hit Percentage on the Query Cost

In this subsection, we validate our algorithm by showing the impact of

MOCCAD-Cache on the processing time and the monetary cost and we compare it with

the semantic cache. Those results corresponds to the sum of the previously presented

results. Thus each value corresponds to 150 processed queries with the same percentage

of exact hit queries, extended hit queries and partial hit queries. The most significant and

relevant values are presented.

Figure 54 shows that the processing time is globally reduced when we use

MOCCAD-Cache. Figure 55 shows that the user will however need to pay the price of

this improvement in terms of time. Once again, the small difference between semantic

caching and our algorithm is due to the small cloud that has been used (only 5 instances).

Additional work would be required to process the same experimentation on a bigger cloud

(with more instances) to really emphasis this difference.

89

Figure 54 - Processing Time Regarding Cache Hit Percentage

Figure 55 - Monetary Cost Regarding Cache Hit Percentage

90

Chapter 5: Conclusion and Future Works

In this research, we have proposed a cost-aware semantic caching algorithm and

architecture called MOCCAD-Cache used within a 3-tier architecture. The goal of

MOCCAD-Cache is to reduce the overhead of semantic caching when the result is

included (extended hit) or partially contained (partial hit) in the cache. When a lot of

computation is required to retrieve the result on the mobile device, our algorithm can

choose to process the query on the cloud if it is less expensive. Indeed, MOCCAD-Cache

can estimate the time, energy and money to be spent for a given query when it is processed

on the cloud or when it is processed on the mobile device. This way, it can decide which

query plan is the best and if it respects the user constraints. In order to avoid additional

overhead due to the computation of the estimations, our caching algorithm uses two

estimation caches. One is used to store the estimations related to query processing on the

mobile device and another one is used to store the estimations related to query processing

on the cloud. Finally, it can process the chosen query plan, retrieve the result and replace

the content of the query cache following the LRU replacement policy.

To experiment the proposed solution, a prototype has been developed on an

Android device communicating with a private cloud. Thanks to the prototype’s user

interface, it is possible to specify constraints, to choose experimentation parameters and

to build queries in order to process them. On the cloud side a 200000-tuple database has

been set up on the Hadoop Framework and can be processed thanks to HiveQL queries.

A pricing model has been used to determine the cost of using the cloud instances. Several

set of queries have been processed on this environment each matching a given percentage

of exact hit, extended hit, and partial hit. For each of those types of cache hit, we

91

compared the performance in processing time, energy consumption and monetary cost

between a query processor without cache, a query processor with a semantic cache, and

a query processor with MOCCAD-Cache. Despite several environmental issues such as

Wi-Fi throughput variation or processing time variations on the cloud, we have been able

to make several conclusions from the experimentation results. The next section

summarize those results and conclusions.

5.1 Summary of the Performance Evaluation Results

MOCCAD-Cache is a decisional semantic caching algorithm and architecture

which can be used to respect the user constraints in terms of processing time, energy

consumption and monetary costs, and is an improvement of semantic caching for the

following reasons:

1. The MOCCAD-Cache algorithm is as efficient as the semantic caching algorithm

regarding exact hit percentage in terms of time, energy and money. This is allowed

by the estimation caches which prevent the many additional computations.

2. Admitting that the cloud chooses its best query plan for the given constraints and

optimization parameters, the MOCCAD-Cache algorithm is more efficient than

the semantic caching algorithm in terms of time regarding extended hit. The

energy remains globally the same due to the result size of the queries chosen to be

processed on the cloud rather than on the mobile device. However, we can observe

a little overhead in terms of money since more queries are processed on the cloud.

3. The MOCCAD-Cache algorithm is equivalent to the semantic caching algorithm

regarding partial hit. Indeed, the download time becomes an important criteria

92

since it costs processing time and energy. Becoming the bottle neck of this

algorithm since the cloud performs query faster with more instances, this

download time needs to be minimum for the algorithm to be efficient. Thus,

processing only a part of a query on the cloud is better than processing the whole

query on the cloud which makes the query plan equivalent to the one used in the

semantic caching algorithm regarding partial hit. Also, money cost becomes

equivalent for the MOCCAD-Cache query processor, the semantic caching query

processor and even the query processor without cache.

4. Globally, our algorithm shows that MOCCAD-Cache can be used to perform

faster queries within a Mobile-Cloud environment. However, the user would have

to pay the price consequently.

5.2 Future Works

MOCCAD-Cache is the first decisional semantic caching algorithm and

architecture within a Mobile-Cloud database system. This first step of optimization and

decision making within a caching algorithm on mobile needs many expansions and opens

many possibilities.

Firstly, the used optimizer has been chosen to be really simplistic to prove that

only a simple optimization with semantic caching can be relevant. However, using a

multi-parameter optimization to minimize time, energy and money while respecting the

user constraints seems essential.

Secondly, it would be interesting to see how this algorithm behave on a public

cloud due to the elaborate pricing, storage and computing model available on this

93

platform. It would then be relevant to see how the MOCCAD-Cache behaves in the 3-tier

architecture made of several heterogeneous clouds and a data owner.

Lastly, the considered operations are only selections. Thus, several other types of

operation need to be considered such as projections and joins. Being able to process

queries with those operations within this Mobile-Cloud environment is necessary in order

to make the prototype as close as possible to a real application case.

94

References

[1] P. Mell and T. Grance, "The NIST definition of cloud computing," NIST, vol.

53.6, p. 50, 2009.

[2] Olston et al., "A view of cloud computing," Communications of the ACM, pp. 50-

58, 2010.

[3] N. Fernando, S. W. Loke and W. Rahayu, "Mobile cloud computing: A survey,"

Future Generation Computer Systems , vol. 29, no. 1, pp. 84-106., 2013.

[4] M. e. a. Satyanarayanan, " The case for vm-based cloudlets in mobile computing,"

Pervasive Computing, IEEE, vol. 8, no. 4, pp. 14-23, 2009.

[5] A. Delis and N. Roussopoulos, "Performance and scalability of client-server

database architectures," in VLDB, 1992.

[6] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M. Tan, "Semantic data

caching and replacement," VLDBJ, vol. 96, pp. 330-341, 1996.

[7] A. Carroll and G. Heiser, "An Analysis of Power Consumption in a Smartphone,"

in USENIX annual technical conference, 2010.

[8] U. D. o. H. a. H. Services, "US Department of Health and Human Services,"

[Online]. Available: http://www.hhs.gov/ocr/privacy/. [Accessed 23 11 2014].

[9] R. Perriot, J. Pfeifer, L. d'Orazio, B. Bachelet, S. Bimonte and J. Darmont, "Cost

Models for Selecting Materialized Views in Public Clouds," International Journal

of Data Warehousing and Mining, 2014.

[10] B. Chidlovskii and U. M. Borghoff, "Semantic caching of Web queries," VLDBJ,

vol. 9.1, pp. 2-17, 2000.

[11] B. Þ. Jónsson, M. Arinbjarnar, B. Þórsson, M. J. Franklin and D. Srivastava,

"Performance and overhead of semantic cache management," ACM Transactions

on Internet Technology (TOIT), vol. 6.3, pp. 302-331, 2006.

[12] Q. Ren and M. H. Dunham, "Using semantic caching to manage location

dependent data in mobile computing," in Proceedings of the 6th annual

international conference on Mobile computing and networking, 2000.

[13] K. C. Lee, H. V. Leong and A. Si, "Semantic Query Caching in a Mobile

Environment," ACM SIGMOBILE Mobile Computing and Communications

Review, vol. 3.2, pp. 28-36, 1999.

95

[14] Q. Ren, M. H. Dunham and V. Kumar, "Semantic caching and query processing,"

Knowledge and Data Engineering, IEEE Transactions on, vol. 15.1, pp. 192-210,

2003.

[15] M. A. Abbas, M. A. Qadir, M. a. A. T. Ahmad and N. A. Sajid, "Graph based

query trimming of conjunctive queries in semantic caching," in Emerging

Technologies (ICET), 2011 7th International Conference on, IEEE, 2011.

[16] M. Ahmad, M. Qadir and M. a. B. M. Sanaullah, "An efficient query matching

algorithm for relational data semantic cache," in Computer, Control and

Communication, 2009. IC4 2009. 2nd International Conference on, IEEE, 2009.

[17] M. Ahmad, S. Asghar, M. A. Qadir and T. Ali, "Graph based query trimming

algorithm for relational data semantic cache," in Proceedings of the International

Conference on Management of Emergent Digital EcoSystems, ACM, 2010.

[18] S. Guo, W. Sun and M. A. Weiss, "Solving satisfiability and implication problems

in database systems," ACM Transactions on Database Systems (TODS), vol. 21,

no. 2, pp. 270--293, 1996.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein and others, Introduction to

algorithms, MIT press Cambridge, 2011.

[20] A. Silberschatz, H. F. Korth and S. Sudarshan, Database system concepts,

McGraw-Hill New York, 1997.

[21] M. Gordon, L. Zhang, B. Tiwana, R. Dick, Z. Mao and L. Yang, Power Tutor, A

Power Monitor for Android-Based Mobile Platforms, 2009.

[22] "Amazon Glacier," 2015. [Online]. Available: http://aws.amazon.com/glacier/.

[Accessed 2015].

[23] Amazon, "Amazon S3," 2015. [Online]. Available: http://aws.amazon.com/s3/.

[Accessed 2015].

[24] J. a. S. G. Dean, "MapReduce: simplified data processing on large clusters.,"

Communications of the ACM, vol. 51.1, 2008.

[25] Thusoo et al.;, "Hive: a warehousing solution over a map-reduce framework,"

VLDB, pp. 1626-1629, 2009.

[26] Olston et al., "Pig latin: a not-so-foreign language for data processing.," in ACM

SIGMOD international conference on Management of data, 2008.

96

[27] Bruno et al., "Continuous cloud-scale query optimization and processing," VLDB,

vol. 6.11, pp. 961-972, 2013.

[28] H. e. a. Kllapi, "Schedule optimization for data processing flows on the cloud," in

ACM SIGMOD International Conference on Management of data, 2011.

[29] L. d'Orazio, "Caches adaptables et applications aux systèmes de gestion de

données reparties a grande échelle," 2007.

[30] Google, "Android Developer," [Online]. Available:

https://developer.android.com/index.html.

