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Abstract 

In mobile-cloud database environments, users request services executed on a 

cloud through mobile devices. Requested data might be partially cached on the 

mobile device itself or must be processed on the cloud which leads to multiple 

contradicting cost objectives such as monetary cost to use the cloud service, query 

execution time on the cloud or on the mobile device, and mobile device energy 

consumption. Choosing an optimal query execution plan is crucial for query 

optimization to minimize the overall cost, but is related to user preferences on 

those various costs. Single-objective optimization strategies are impractical since 

those do not consider tradeoffs between different costs. The existing multi-

objective optimization strategies of Pareto-Set and Skyline Query lack a 

sophisticated user interaction since the resulting set tends to be large in size which 

makes it difficult for a user to select a tradeoff between costs. Furthermore, a user 

might not be aware of query cost constraints which makes his/her decision 

process impossible.  To fill this gap, this thesis presents the multi-objective 

Normalized Weighted Sum Algorithm with its novel user-interaction model, using 

weights associated with cost objectives for query optimization which can be set 

prior to execution. The proposed model is compared with one- and multi-

dimensional optimization strategies in terms of result quality and user interaction. 

Experiments show that the proposed solution improves the result quality 

regarding single-objective strategies (lexicographical ordering) and improves user 

interaction with multi-objective optimization strategies (Pareto-Set / Skyline 

Query) in terms of user response time and decision accuracy.
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Chapter 1: Introduction 

This chapter will introduce the problem domain. Section 1.1 introduces domain 

specific definitions and explains the given environment.  Section 1.2 follows the 

problem definition and section 1.3 gives an overview about the following Chapters 

and organization of this thesis. 

 Definitions 1.1

1.1.1 Cloud Environment 

The main characteristic of a cloud service is the high computing elasticity 

and resource management. Elasticity is defined as horizontal elasticity, when 

increasing the number of nodes (physical machines) a service is executed on, and 

vertical elasticity, when increasing the computation power and/or memory of 

nodes [1]. An example of elasticity can be seen in Figure 1 which represents 

Amazon’s “Web Service prices - EC2 - On-Demand Pricing” [2]. In Amazon’s price 

scheme, they offer different types of nodes with different computation power and 

memory for different rates. Assuming that a higher computation power/memory 

leads to a faster response time of services, cloud environments introduce the 

trade-off between service execution time and service monetary cost since one 

objective cannot be optimized without weakening the other objective.  
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Figure 1: Amazon Web Service prices - EC2- On-Demand Pricing [2] 

1.1.2 Mobile-Cloud Environment 

The importance of mobility is the driving factor in the field of mobile 

computing. Independent of their position, users request services through their 

mobile devices. Nevertheless, with the advantage of transportable devices to 

guarantee mobility comes the trade-off of limited resources and computational 

power. This limitation leads to mobile-cloud computing [3, 4] and a mobile-cloud 

database environment [5], where a user issues a service request to the cloud from 

a mobile device to obtain data. This requested data is either stored on the cloud or 

retrieved from a cache on the mobile device. In addition to the two cost objectives 
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explained in Section 1.1.1, energy consumption on the mobile device is an 

additional cost to monetary cost and execution time.  

 Problem Definition 1.2

With monetary cost, query execution time and energy consumption, query 

scheduling is a multi-objective optimization problem. Based on the elasticity of the 

cloud (considering different cloud pricing models, such as AWS [2] and MS Azure 

[6]) and the possible execution of a query on a mobile device, a query can be 

executed in multiple ways, each with a distinct combination of costs. This 

optimization process is a strain of contradicting objectives as usually a faster 

execution leads to a higher monetary cost, which makes Multi-Objective Query 

Optimization a crucial problem to the mobile-cloud environment.  

It is the goal of this thesis to develop an algorithm that can determine an 

optimal way to execute a query based on the preferences of a user without 

burdening him/her with complex user interactions. This algorithm will be based 

on the architecture of a mobile cloud database environment proposed in [7] which 

is shown in Figure 2.   In this figure, a user is using a mobile device to issue a query 

that needs to access the database stored on the cloud (Step 1: Issue Query). This 

user can be seen as a client of the cloud database services. The site of the mobile 

device distinguishes itself from the other sites through the high mobility but 

limited resources and computational power. 

After the query is issued, the implemented query cache on the mobile 

device is checked if the data requested by the query is already available in the 

cache [7] (Step 2). If the data is not available, the query is forwarded through the 
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data owner (Step 3) to the Cloud Services (Step 4). The data owner is owner of any 

produced data and is responsible for it. For example, it can be a business like a 

university or hospital, which is producing data and utilizes cloud services to store 

and process it. On the cloud, the query will be optimized during the step of query 

processing (Step 5). On the cloud site, based on its high elasticity, there may exist 

multiple ways for executing a query. Those options are defined by the available 

cloud resources (nodes) and result in a multi-dimensional cost. 

After a way to execute the query (Query Execution Plan) is selected, the 

query will be executed (Step 6) and query results are received. This process is 

explained in more detail in Section 2.1. The query results are forwarded through 

the data owner (Step 7) to the user (Steps 8 and 9). Finally, based on the 

implemented cache replacement policies, the cache will be updated based on the 

last query (Step 10).  

 

Figure 2: Mobile-Cloud Database Architecture 
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 Organization of the Thesis 1.3

The rest of the thesis is organized as follows.  Chapter 2 presents the query 

processing background and a literature review on the topic of multi-objective 

query optimization. Chapter 3 presents the proposed solution, the Normalized 

Weighted Sum Algorithm (NWSA), the associated user interaction models, a NWSA 

based scheduling algorithm, and the proposed architecture including the 

preceding aspects. Chapter 4 describes the experiments conducted to study the 

performance of the proposed solution and their results. Finally, Chapter 5 provides 

the conclusions and presents future work.  
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Chapter 2: Literature Review 

Chapter 2 contains the literature review, describing fundamental and 

related work. Section 2.1 focusses on Query Processing and the different steps 

needed for it, followed by section 2.2 describing different multi objective 

optimization strategies. 

 Query Processing 2.1

Query processing processes an input query to compute its final query 

execution plan (QEP) and then executes this QEP to obtain the requested query 

data [8]. Query Processing is realized in multiple steps shown in Figure 3.  
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Figure 3: Query Processing Steps 

After receiving a query (Step 1), the query parser converts the query into a 

logical query plan also known as a logical tree (Step 2). This tree uses relational 

algebra to eliminate the query language specific syntax. The optimizer then 

processes the logical tree in Step 3 using algebraic transformations to optimize the 

tree. An example of optimization is “pushing down” an early selection in the tree. 

This optimization usually reduces the size of an algebraic relation, which then 

results in a faster execution of the following operations. After applying algebraic 

transformations to get an optimized tree, the task generator (Step 4) will then use 
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the database statistics on the data size of the relations involved in the query to 

further optimize the tree and to convert the query operators from the tree into 

algorithms. This, for example, can include replacing join operators by next-loop 

join or hash join algorithms, or choosing a method for selection operators. The 

final step (Step 5) before executing the query is completed by the scheduler, which 

assigns each operator to a node and to a container on a node where the operator 

should be executed. This assignment is crucial because it defines the costs of a 

query in terms of monetary cost that must be paid to the cloud service provider, 

execution time and energy consumption based on the pricing models of the used 

nodes. Each possible assignment combination of operators to containers 

represents a possible query execution plan (QEP); all of them will yield the same 

results when executed, but consist of different associated costs. It is the task of a 

multi-objective optimization strategy to find the best QEP in terms of its costs for 

execution. 

 Multi-Objective Optimization 2.2

Multi-Objective Optimization is a crucial process in the mobile cloud 

environment. Based on the different occurring costs explained in Section 1.1 and 

Section 2.1, it is the goal of a multi-objective optimization strategy to find a trade-

off among the given contradicting objectives of a QEP. Section 2.2.1 will provide an 

introduction of the state of the art single-objective optimization and explanations 

for why those strategies are not suitable for multi-objective optimization 

problems. Next, Section 2.2.2 and Section 2.2.3 will give an introduction of multi-

objective optimization using Pareto-Set Optimization, Skyline Queries and Scoring 
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Functions. Finally, Section 2.2.4 gives an introduction to the Weighted Sum Model, 

which is the foundation of the proposed solution in Chapter 3. 

2.2.1 Lexicographical Ordering 

A user-friendly decision strategy to find the optimal QEP in terms of costs is 

the lexicographical ordering [9]. Lexicographical ordering focuses on a single main 

objective, such as execution time, and orders further objectives, like monetary cost 

and energy consumption, in a descending order. The complexity of lexicographical 

ordering is in linear relation to the count of alternatives it selects its solution from 

because it scans the alternative once for the lowest parameter. While it is an easy 

executable strategy, lexicographical ordering is not a feasible solution for multi-

objective optimization as shown in following example: 

 

Figure 4: Lexicographical Ordering: Execution Plan Costs Example 

Considering the three query execution plans (QEPs) with their costs for 

monetary costs (M), execution time (T) and energy consumption (E) shown in 

Figure 4, focusing on a single objective always leads to the decision to select either 

plan QEP1 or QEP2 for execution since these QEPs have a minimum cost in one of 

the three objectives. Since QEP3 does not have a minimum value in any of the three 

costs, it will never be selected although it is a competitive choice when considering 

QEP1: {M= $0.080; T= 0.5s; E= 0.012 mA} 

QEP2: {M= $0.050; T= 3.0s; E= 0.300 mA} 

QEP3: {M= $0.055; T= 0.6s; E= 0.013 mA} 



10 

all three objectives on the same level of importance. Therefore, a strategy which 

considers all objectives at the same time is needed in order to make a 

comprehensive decision in a multi-objective optimization environment. 

2.2.2 Pareto-Set Optimization and Skyline Queries 

This section describes the Pareto-Set Optimization, which is fundamental 

for every Multi-Objective Optimization problem. The goal of this optimization is 

the calculation of a set of non-dominated alternatives, the Pareto-Set. An 

alternative ‘A’ is dominating an alternative ‘B’ if at least one objective (decision 

variable) of ‘A’ is better than the associated objective in ‘B’ and all other objectives 

in ‘A’ are at least equal to the associated objectives in ‘B’. Those dominating 

alternatives are called Pareto-Optimal [10, 11]. In the context of query 

optimization, every alternative represents the costs of a single QEP. 

Figure 5 gives an example for a two-dimensional Pareto-Set query 

optimization. Alternatives a, b, and c are not dominated by any other point in this 

graph, since there exists no alternative with better cost values for both objectives. 

The covered squares of a point represent the dominated area of an alternative. 

Every point lying within a covered square is dominated by the alternative 

spanning the square. 

Skyline queries [12, 13, 14] are one example of a strategy used to find a 

Pareto-Set. The definition of a Skyline Query is similar to a Pareto-Set.  The result 

of a skyline query is called a skyline. This skyline contains objects which fulfill the 

requirements of not being dominated by another object in terms of a given utility 
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function [15]. Skyline queries were first mentioned in 2001 where three basic 

skyline computations were introduced [16]. 

 

Figure 5: 2-Dimensional Pareto Set Optimization 

Much research has been conducted to optimize the Pareto Set / Skyline 

algorithm itself [17].  Query optimization techniques to speed up the calculation 

time and sizing down the resulting set using heuristics [18] and preprocessing [19] 

were introduced in the research by I. Trummer and C. Koch. Those techniques are 

needed since the calculation of all possible QEPs is not computable.   
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However, the major drawback of a Pareto-Set/Skyline Query is the resulting 

set of alternatives, which tends to be very large in size so that users are left with a 

choice to select a single QEP out of a large pool of possible solutions [20]. Research 

on the size of a Pareto-Set already estimated its size to be Θ((ln 𝑛)𝑑−1 / (𝑑 − 1)!) 

for n data objects and d objectives, assuming attribute independence [21, 20]. This 

problem was addressed by Lee et al. [15] by providing a way of reducing the 

skyline to a size manageable by users. Users are repeatedly asked about their 

preference between two chosen objectives. These questions are designed 

according to the answer’s impact on the size of the skyline to minimize user 

interaction, but the approach still uses multiple user interactions.  

Furthermore, the research on Skyline Queries neglects the fact that the user 

executing the query might not be aware of all constraints on the different costs to 

select a sophisticated QEP. In the use case of a larger organization, a query 

executing user might know the restrictions on execution time and energy 

consumption but might be unaware of the monetary cost he/she is allowed to 

spend since a budget is often centrally managed by his/her supervisor. An 

approach is needed to separate query executing users from another type of users, 

whom we call superusers, who do not execute queries, but know and have 

authorities to set the restrictions on the queries. 

In summary, the skyline approach makes it possible for the user to consider 

multiple objectives at the same time, but also burdens the user with the crucial 

decision to select the final QEP. 
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2.2.3 Scoring Function 

 

Figure 6: 2-Dimensional Scoring Function 

The strength of finding a Pareto-Set is that every alternative in this set is 

optimal for at least one scoring function. A scoring function describes a specific 

stress configuration on the different objectives in order to set the importance to 

them and to compare alternatives in this Pareto-Set [22]. A disadvantage of a 

scoring function is that the stresses on objectives have to be defined prior to 

execution whereas the Pareto-Set does not require any further input besides the 
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QEPs. An advantage of a scoring function is that users do not have to select a QEP 

out of a set since a specific scoring function only has one optimal solution.  Figure 6 

shows a scoring function (blue): every point in this two-dimensional space will be 

projected (green) on a linear function using the stresses. The value of this 

projection (the intersection of the green projection and the blue scoring function) 

is the score. The alternative with the minimum score is an element of the Pareto-

Set as proven in Section 3.1.2 and [23]. 

2.2.4 Weighted Sum Model 

The Weighted Sum Model (WSM) [24, 25, 26] is most commonly used in 

multi-objective optimization problems. In this model, every possible alternative (a 

QEP in our application) is rated by a score. The score for each alternative includes 

all objectives, which are individually weighted to stress the importance of different 

objectives. This model is used in many multi-objective optimization problems in 

various fields of computer science, such as network and optimization problems 

[27, 25] , and also other fields such as economics (Cost-Utility Analysis) [28, 29]. 

The formulas used in this model are shown in Figure 7. 

In these formulas, the WSM-score for an alternative Ai denoted as 

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 is calculated by adding the products of a weight 𝑤𝑗  with its 

corresponding parameter 𝑎𝑖𝑗, the value of this objective. This parameter is, for 

example, the monetary cost which has to be spent to execute the query. A set of 

weights 𝑤𝑗  for every parameter  𝑎𝑗  is called a weight profile (WP). 
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The best alternative is chosen as the one which has the maximum WSM 

score (𝐴∗
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒). The different objectives are assumed to be positive: the higher 

the score, the better the alternative. Assuming the objectives to be negative (in 

case of cost models), the best alternative has equivalently the lowest score.  

 

 

Figure 7: Weighted Sum Model Scoring Function 

The weakness of this model is the process of summarizing the different 

objectives. The fact that different objectives might have different dimensions and 

units leads to the problem of adding apples and oranges [30]. Since the mobile-

cloud database environment has to deal with multi objectives with different units, 

the Weighted Sum Model cannot be used without major changes in its strategy. 

 This section described different strategies for multi-objective optimization. 

I showed that the common lexicographical ordering is not suitable for the decision 

on multiple objectives and showed the disadvantages of Pareto-Set optimization in 

terms of user interaction. Furthermore, I introduced the concept of the weighted 

sum model, which I will expand in Chapter 3 to fit the described problem domain. 

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1

 

𝐴∗
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = max

𝑖
∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1
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Chapter 3: Proposed Solution and Architecture 

This chapter presents the proposed multi-objective optimization strategy, 

the Normalized Weighted Sum Algorithm (NWSA), and its effects on user 

interaction, query scheduling algorithm and system architecture. Specifically, 

Section 3.1 describes the algorithm itself and compares it to the multi-objective 

optimization strategy of Pareto-Sets. Section 3.2 discusses the user interaction 

with NWSA, compares it to the user interaction with Pareto-Sets, explains the 

concept of “superusers” and “query executing users”, and demonstrates a 

developed sophisticated superuser interface to highlight the advantage of user-

type separation. Section 3.3 then incorporates NWSA into a generic greedy query 

scheduler and discusses its impact. Finally, Section 3.4 explains the impact of 

NWSA to the existing mobile-cloud database architecture [7], previously explained 

in Section 1.1.2. 

 Normalized Weighted Sum Algorithm 3.1

This section describes the proposed algorithm called the Normalized 

Weighted Sum Algorithm (NWSA), the implementation details and the proof 

showing that NWSA always selects a query execution plan from the Pareto-Set. 

As already pointed out in Section 2.2.4, one problem of the WSM is the 

addition of multiple dimensions or units. This problem can be resolved by 

normalizing the different parameters [25]. This normalization can be done in 

relation to a user-defined maximum of acceptance of each objective. The resulting 

values represent the fraction towards this maximum and do not contain a unit 

which makes them addable to each other. This normalization to a user-defined 
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maximum of parameters adapts the ideas by Goh and Cheng [31] of a user-based 

decision to eliminate constraint violating alternatives. Another advantage of this 

user-defined maximum of acceptance of each objective can be seen in the 

implementation of the algorithm, shown in Section 3.1.1. Alternatives which 

violate those regulations can be taken out of consideration to follow the defined 

conditions. 

The second adjustment for NWSA regarding the general WSM is done in 

regards to the weights. To include environmental factors, the used weight is 

composed of a user-defined weight and an automatically generated environmental 

weight. Environmental factors are, for example, the current battery status, an 

ongoing charging process or factors describing the currently used cloud. The 

environmental weight can adjusts the user weight if, for example, a mobile device 

is being charged and energy consumption is obsolete, or a query is run overnight 

and execution time should be assigned a minor importance factor. If all 

environmental weights are kept equal, those will not have an impact on the 

previously defined user weight. The experiments of Chapter 4 will not further 

study a modification by environmental weights. 

In conclusion, the Modified Weighted Sum Model Scoring Function can be 

expressed as in Figure 8. 

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑤𝑗

𝑎𝑖𝑗

𝑚𝑗

𝑛

𝑗=1

 

Figure 8: Modified Weighted Sum Model Scoring Function 
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The function consists of following variables: 𝑎𝑖𝑗 is the value of alternative i 

(QEPi) for objective j, 𝑚𝑗  the user-defined acceptable maximum value for objective 

j, and 𝑤𝑗the normalized composite weight of user and environment for objective j 

defined in Figure 9. 

𝑤𝑗 =  
𝑢𝑤𝑗 ∗𝑒𝑤𝑗

∑(𝑢𝑤 ∗𝑒𝑤)
. 

Figure 9: Composite Normalized Weight Factor 

Figure 9 shows the computation of the composite weight where uwj and ewj 

describe the weight of the user and the environmental weight for objective j, 

respectively. Since the different objectives are representative of different costs, the 

algorithm chooses the alternative with the lowest score to minimize costs as 

shown in Figure 10. It can be noted, that the number of different alternatives does 

not influence this algorithm which makes NWSA adaptable to any number of 

different objectives.  

𝐴∗
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 =  min

𝑖
∑ 𝑤𝑗

𝑎𝑖𝑗

𝑚𝑗

𝑛

𝑗=1

 

Figure 10: Modified Weighted Sum Model Scoring Function: Optimal 
Alternative 

In the following Section 3.1.1, the proposed algorithm is described. It is then 

followed by a proof showing that the chosen alternative in this decision process is 

always an element of the corresponding Pareto-Set, which is independent of the 

chosen weights.  
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3.1.1 Algorithm 

Algorithm 1: NWSA- Decision Algorithm 

Input:  

Alternatives Ai with i=1..m and parameter aij to objective Oj with j=1..n ; 

uwj the user weight for objective Oj; 

ewj the environment weight for objective Oj; 

mj the maximum accepted value for objective Oj 

Output: best alternative Ai 

1. Abest  null 
2. AbestRestrictionViolating  null 

 
3. for i=1 to m 
4.           Ai

score  CalculateScore(Ai) //calcualte NWSA-scores 
5. end for 

 
6. for i=1 to m 
7.           violate  false 
8.           for j=1 to n 
9.                   if(aij>mj) 
10.                             violate  true //check alternative for constraint violation 
11.                             save violation 
12.                   end if 
13.           end for 
14.           if(violate=true) 
15.                   if(Ai

score< AbestRestrictionViolating
score) 

16.                             AbestRestrictionViolating  Ai //check if the current alternative is the best one 
17.                   end if 
18.           else 
19.                   if(Ai

score < Abest
score) 

20.                             Abest  Ai 
21.                   end if 
22.           end if 
23. end for 

 
24. if(Abest  null) 
25.         return AbestRestrictionViolating , violations //returns the best alternative with its violation 
26. else 
27.         return Abest  //returns the best alternative 
28. end if 

 

Figure 11: Algorithm 1: NWSA - Decision Algorithm 
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The developed algorithm is shown in Figure 11. Its goal is to calculate the 

best alternative in a multi-objective decision process. 

The modified WSM function to calculate the score of an alternative Ai 

(CalculateScore(Ai)), which is used in Line 5 of this algorithm, is the previously 

defined function in Figure 8. This function is executed for every alternative (Lines 

3-5). As it can be seen in this algorithm, each alternative is checked to see if it 

violates the user-defined maximum value for each objective (Lines 8-13). The 

violation itself has to be saved for future use (Line 11). Afterwards, the best 

alternative (Abest), which is the one with the lowest score, is selected (Lines 14-22) 

and returned as the output of the algorithm. If all possible alternatives violate 

those restrictions, the algorithm will return the lowest score alternative 

(AbestRestrictionViolating) as well as the previously saved restriction(s) that it violates 

(Lines 24-25). The complexity of this algorithm is in linear relation to the count of 

alternatives, which is also the complexity of the lexicographical ordering strategy 

as discussed in Section 2.2.1. The linear complexity of the given algorithm is based 

on the single iteration over all alternatives with each iteration having a constant 

complexity. 

3.1.2 Proof for Pareto-Set 

This section provides a proof demonstrating that, independent of possible 

weights and the number of objectives, the proposed algorithm always picks an 

alternative within the Pareto-Set.  
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Proof by contradiction: 

It is assumed that the chosen algorithm picks an alternative Abest which is not an 

element of the Pareto-Set. In compliance with the used formula in the proposed 

algorithm (Figure 8) it can be determined that: 

𝑨𝒃𝒆𝒔𝒕
𝑾𝑺𝑴−𝒔𝒄𝒐𝒓𝒆 =  ∑ 𝒘𝒋𝒂𝒊𝒋

𝒏

𝒋=𝟏

=  𝐦𝐚𝐱
𝒊

∑ 𝒘𝒋𝒂𝒊𝒋

𝒏

𝒋=𝟏

 

 

Since Abest is not an element of the Pareto-Set, an alternative Apareto has to exist 

which dominates Abest. According to the definition of the Pareto-Set, this 

alternative has one higher value for at least one criterion than Abest without having 

a lower value for all other objectives. This is in contradiction to 

𝐴𝑏𝑒𝑠𝑡
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 =  max

𝑖
∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1

 

since the score is better for Apareto with unchanged weights. A similar proof is 

shown by Zadeh [32] and in the context of skyline queries is shown by Chomicki 

[12]. 

 User Interaction Models for NWSA and Pareto Set 3.2

Figure 12 shows the user-interaction models for Skyline Queries / Pareto-

Set and NWSA, respectively. Comparing both models shows that both approaches 

have the query as input and use the Pareto-Set algorithm or NWSA algorithm, 

respectively, to handle the request. In addition to the query, NWSA also requires 

the input of a weight profile to stress the objectives. The result of the Pareto-Set 

algorithm is the set of Pareto-Optimal alternatives. It is the task of a user to 
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manually select one of the given alternatives for execution of the query. This 

decision on the Pareto-Set to select a single alternative is eliminated in the user 

interaction model of the NWSA approach. The NWSA algorithm directly computes 

a single optimal solution based on the given weight profile. 

Input:
Query

Pareto Set / Skyline 
Algorithm

Result: Pareto Set / 
Skyline

User Decision on 
Pareto Set / Skyline

Result: Single QEP

Offline: 
Set Weight Profiles 

Input:
Query

User Decision on 
Weight Profile

NWSA Algorithm

Result: Single QEP

Pareto Set Approach NWSA Approach

 

Figure 12: User Interaction Models: Pareto-Set Approach and NWSA 
Approach 

The fact that user preferences/weights can be preset prior to execution of 

the algorithm is another advantage NWSA has over the Pareto-Set approach. To 
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take advantage of being able to preset weight profiles, we propose two types of 

users: users that preset weight profiles (superusers) and users that invoke the 

execution of a query (query executing users). A weight profile based on the 

application requirements can be preset by a superuser who is aware of all 

constraints on the different objectives. This weight profile can then be selected by 

a user executing the query, which is minimizing the decisions he/she has to make. 

Furthermore, a weight profile can be described by an application-based logical 

description, such as “emergency query” or “batch query”, to describe the 

preferences a weight profile reflects. In the example of emergency queries or batch 

queries, the description would reflect a weight profile with high importance on 

execution time or low importance on execution time, respectively. The number of 

different weight profiles is directly influenced by the superuser. This number 

should be kept low (5 or less) to not burden the query executing user with a 

difficult decision on a weight profile. A decision on a large number of weight 

profiles would be similar to a decision on a Pareto-Set, which we try to avoid. This 

aspect is shown in the experiment shown in section 4.2. A real world example 

would be the number of possible shipping types when ordering an item: a large 

number of shipping options would complicate the decision process whereas a 

decision on just a few alternatives is specific enough to find the desired trade-off. 

3.2.1 Superuser Interface 

Taking advantage of being able to preset weight profiles by superusers and 

making the decision simple for executing users still leaves a superuser with 

his/her decision on how to set weight profiles. A sophisticated example for a 
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superuser interface to setup weight profiles has been developed and is shown in 

Figure 13. 

 

Figure 13: The Superuser Interface 

The developed superuser interface has the purpose of giving a tool to the 

superusers to set accurate weight profiles based on their application requirements 

for the executing users to select. The main feature of this interface is the graphical 

representation of all possible weight profiles in an interactive parallel plot [33]. 

Parallel plots are used to show connections between high-dimensional objectives: 

a point of an n-dimensional space is represented by n vertices on n parallel 

dimensions which are connected by a polyline.  The position of a vertex in any 

dimension corresponds to the coordinate of this point in this dimension. Figure 13 

shows such a parallel plot with each line representing a weight profile (weights on 

monetary cost, execution time, and energy consumption) and its corresponding 

cost which is randomized in this example. An example of a weight profile would be 

0.8 weight on monetary cost, 0.1 weight on execution time, and 0.1 weight on 

energy with its corresponding costs of $40,000, 8100 seconds, and 220000 mAh 
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(milliampere hour). The three different costs are calculated based on the average 

cost of a query using this specific weight profile, then multiplied by the expected 

number of queries to execute. This data can be received by the system when 

evaluating historical data of query execution during the previous time periods. 

Assuming one million queries, the corresponding average costs per query are 

$0.04, 0.0081s, and 0.22 mAh when using the weight profile in the previous 

example. 

Furthermore, Figure 14 shows the use of a filter function, constraining the 

monetary cost to a limit of $45,000. Selecting a range on an axis reduces all 

polylines to those that have a vertex in the defined range. In the given example, the 

superuser is able to constrain the resulting costs of a weight profile to narrow 

his/her choice on a weight profile for the query executing user. 

 

Figure 14: The Superuser Interface including a constraint selection on 
monetary cost 

 

  



26 

 Normalized Weighted Sum Algorithm Based Scheduling Algorithm 3.3

This section will describe, how to incorporate the Normalized Weighted Sum 

Model in the scheduling process, previously described in section 2.1. This step is 

needed to reduce the complexity of a Pareto-Set scheduler as analyzed in section 

3.3.1. 

The “Normalized Weighted Sum Algorithm based scheduling algorithm” 

(NWSA-S), shown in Figure 15,  is a two stage algorithm based on the generic 

nested loop scheduling algorithm presented by Kllapi et al. [34].  

Algorithm 2: NWSA based scheduling algorithm (NWSA-S) 

Input:  

WP : The selected weight profile 

G: The dataflow graph 

CONST: Solution constraints 

LIMIT: Container limit sequence generator 

Output: bestQEP: the best QEP of G given the other parameters. 

1. bestQEP    
2. while LIMIT.hasNext() and STOP.continue() do 
3.      limit   LIMIT.getNext() 
4.      nextQEP   SCHEDULER(WP; G; limit; CONST) 
5.      bestQEP   FILTER(bestQEP, nextQEP) 
6.      STOP.addFeedback(nextQEP) 
7. end while  

 
8. return bestQEP  

 

Figure 15: Algorithm 2: NWSA based scheduling algorithm (NWSA-S) 

The input parameters for this Algorithm are the following:  

 The weight profile (WP) selected by the query executing user and preset by 

the superuser.  
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 The dataflow graph (G) which is the result of the Task Generator (compare 

Section 2.1, Figure 3).  

 The solution constraints (CONST) as the maximum allowed costs for each 

objective. These constraints are used for the normalization process of 

NWSA. 

 The list of containers (LIMIT), including specifications of each container, 

available for operator scheduling.  

In addition to the input, the algorithm uses four functions which are defined as 

follows: 

 LIMIT.getNext returns a set of containers which should be used to schedule 

the operators for G in order to determine the QEP using this set of 

containers. In case of homogeneous containers, LIMIT.getNext returns an 

increasing number of containers with identical specifications. 

 SCHEDULER (WP; G; limit; CONST) determines the optimal QEP based on 

the given weight profile, the dataflow graph, the set of containers and the 

maximum allowed costs for each objective. An NWSA greedy 

implementation of this algorithm is given in Figure 16. 

 FILTER(bestQEP, nextQEP) determines the optimal QEP based on the score 

of bestQEP and nextQEP. The complexity of this filter is 𝑂(1) since it is a 

simple comparison of two numbers. 

 A boolean routine STOP determining whether or not to stop the 

exploration. The STOP routine used in NWSA-S in case of homogeneous 

containers is determined by the improvement of a score of a new QEP in 
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regards to the previous best QEP. If the improvement by the new QEP is 

below a certain threshold, the algorithm stops the exploration of further 

containers.  

NWSA-S iterates over the different sets of containers specified in LIMIT and 

called by LIMIT.next() (Line 3), calculates a QEP based on the SCHEDULER (Line 

4), compares the new QEP with the current best QEP (Line 5), and updates the 

STOP routine (Line 6) until there is no new set of containers or the STOP routine 

stops any further exploration (Line 2). Since NWSA-S is iterating over limit, the 

complexity of this algorithm is defined by the size of limit and the complexity of 

the scheduler used in the loop: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑁𝑊𝑆𝐴 − 𝑆  𝑂(𝑛) +  𝑂(𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟), 𝑤𝑖𝑡ℎ 𝑛 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑖𝑚𝑖𝑡  

The “Scheduler: NWSA Greedy” (NWSA-S_G), shown in Figure 16,  is a 

greedy algorithm based on the generic greedy scheduling algorithm presented by 

Kllapi [34] which is used as the SCHEDULER function in Algorithm 2 (Figure 15).  
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Algorithm 3: Scheduler: NWSA Greedy 

Input:  

WP : The selected weight profile 

G: The dataflow graph 

C: The maximum number of parallel containers to use 

CONST: Solution constraints 

Output: 𝑆𝐺 : The schedule of G with at most C containers 

1. 𝑆𝐺    
2. 𝑠𝑐𝑜𝑟𝑒𝑠𝑜𝑝   NWSA(G, C) 

3. ready   {operators in G that have no dependencies} 
4. while ready   do 
5.           n    NEXT(ready, 𝑠𝑐𝑜𝑟𝑒𝑠𝑜𝑝) 

6.           SG ASSIGN(C , n , WP ) 

7.           ready  ready – {n} 
8.           ready  ready + {operators in G that dependencies no longer exist} 
9. end while 
10. return 𝑆𝐺  

 

Figure 16: Algorithm 3: Scheduler: NWSA Greedy 

The input parameters for this Algorithm are the following:  

 The weight profile (WP) selected by the query executing user and preset by 

the superuser.  

 The dataflow graph (G) which is the result of the Task Generator (compare 

Section 2.1, Figure 3).  

 The solution constraints (CONST) as the maximum allowed costs for each 

objective. These constraints are used for the normalization process of 

NWSA. 

 A set of containers (C), including specifications of each container, available 

for operator scheduling.  



30 

In addition to the input, the algorithm uses three functions which are defined as 

follows: 

 NWSA(G, C) computes the scores for each operator in G for each container 

in C. In case of heterogeneous containers, NWSA(G, C)  has a complexity of 

𝑂(𝑜𝑝 ∗  𝑐) with op equals the number of operators in G and c equals the 

number of containers in C, since a score is computed for every operator on 

every container In case of homogeneous containers, the complexity of 

NWSA(G, C) decreases to 𝑂(𝑜𝑝) since independent from the number of 

containers, the score of one operator will be equal for all containers in C 

which leads to one score computation for each operator. 

 NEXT(ready, scoresop) selects one operator out of the set of ready 

operators. This selection is done by reading the scores of ready operators 

on all containers and choosing the operator with the overall lowest score 

for any container in C.  

 ASSIGN(C, n ,WP): A score for each possible assignment of n to a container 

in C is calculated. Afterwards, the operator n will be assigned to the 

container with the lowest score for the resulting schedule. The complexity 

of ASSIGN is dependent on the number of containers c: 𝑂(𝑐) since a score 

for each container assignment is calculated. 

NWSA-S_G starts with an empty schedule (Line 1), computes the score for each 

operator in G for each container in C (Line 2), and receives all operators without 

any dependencies (Line 3). The algorithm then loops over the following sequence 

of operations until no operator is ready to be assigned(Line 4): the operator with 
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the overall lowest score for any container in C is selected (Line 5) and is assigned 

to the container whose resulting score for the global schedule is the lowest (Line 

6). The selected operator is now assigned to a container and part of the global 

schedule 𝑆𝐺 . Finally, the list of assignable operators is updated by removing the 

assigned operator (Line 7) and adding the operators in G, which’s dependencies no 

longer exist (Line 8). After all operators are assigned to their containers, the 

resulting schedule 𝑆𝐺 represents the QEP with respect to WP, G, C, and CONST. 

3.3.1 Trade-off of NWSA-S_G 

NWSA-S_G is a greedy scheduler which will always find the local optimum 

[35] when assigning a new operator based on the already assigned operators. The 

complexity of a Pareto-Set Scheduler is element of 𝑂(𝑐𝑜𝑝) with op equals the 

number of operators in G and c equals the number of containers in C. This is based 

on the fact that each possible combination of assigning operators to containers 

represents one QEP. Calculating all those QEPs is not computable in a reasonable 

amount time since, for example, a schedule of 50 operators and 10 containers 

would have 1050 possible QEPs and would need 1050computations. NWSA-S_G has 

a comparably low complexity with 𝑂(𝑜𝑝 ∗  𝑐) since operators are iteratively 

assigned and assume a fixed assignment of previously assigned operators. Given 

the previous example of 50 operators and 10 containers, there are 10 alternatives 

of assignments for each operator, resulting in 500 possible QEPs Nevertheless, 

since the execution time of a schedule 𝑆𝐺 , defined as the maximum execution time 

of all containers in C (max𝑐 ∈ 𝐶 𝑡𝑖𝑚𝑒(𝑐)), is a non-linear function, the resulting QEP 

is not guaranteed the global optimum [35] for its cost with respect to WP, G, C, and 
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CONST. Figure 17 shows an example where NWSA-S_G is not able to find the global 

optimum schedule. 
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WP: Weight_Time: 0.7 ; Weight_Money: 0.3 

G: {op1, op2, op3; all independent} 

C: {c1, c2} 

Scores-Table of G x C 

<normalized_cost_Time, 

normalized_cost_Money> 

c1 c1_Score c2 c2_Score 

op1 <5,5> 5 <3,9> 4.8 

op2 <3,2> 2.7 <2,7> 3.5 

op3 <9,10> 9.3 <6,12> 7.8 

 

Schedule 1: c1 = {op2} , c2 = {op1, op3}  

 Total time: max{3, 3+6} = 9     Total money: 2+9+12 = 23  

Schedule 2: c1 = {op1, op2}, c2 = {op3} 

 Total time: max{5+3, 6} = 8     Total money: 5+2+12 = 19 

Figure 17: Trade-off example NWSA-S_G 

Following NWSA-S_G, the algorithm first assigns op2 (the operator with the 

lowest overall score) to c1 (the container with the lowest schedule score), followed 

by assigning op1 (the operator with the lowest remaining score) to c2 (the 

container with lowest schedule score), and assigning op3 to c2 (the container with 

the lowest schedule score). This schedule 1 results in a total time of 9 and a 

monetary cost of 23. Comparing it to the schedule 2 with c1 = {op1, op2} and c2 = 

{op3}, the total time of 8 and monetary cost of 19 dominates schedule 1. This 
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schedule 2 is not found by NWSA-S_G because the assignment for op1 to c1 is not 

the local optimum assignment but takes into consideration the assignment of op3 

to reach the global optimum of the schedule. This problem is tied to the greedy 

structure of this algorithm since a greedy algorithm always optimizes toward the 

local optimum. 

 

 Proposed Architecture 3.4

Based on the proposed solutions in Sections 3.1, 3.2, and 3.3, the architecture 

of the Mobile-Cloud Database Environment changes to incorporate the different 

types of users as well as to incorporate the weight profiles needed for the 

scheduler. The resulting Mobile-Cloud Database Architecture is shown in Figure 

18. 
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Figure 18: Proposed Mobile-Cloud Database Architecture 

 As described in Section 3.2, the weight profiles are preset by superusers 

before a query executing user starts to issue a query. Because of their centralized 

management, the weight profiles are stored at the data owner and fetched to every 

mobile device client upon request.  

 Compared to the previous architecture in Section 1.1.2, Figure 2, an issue of 

a query not only requires the definition of a query, but it now also requires the 

selection of a preset weight profile (Step 1). The weight profile is carried along 

Steps 2 – 4, which do not change from the previous architecture. Step 5 internally 

changes from using the lexicographical ordering to using the proposed scheduling 

algorithm NWSA-S, described in Section 3.3.  
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Chapter 4: Evaluation and Results 

This chapter presents the conducted experiments and their corresponding 

results to evaluate the performance of the proposed model, NWSA. In three 

experiments, NWSA is compared with the single-objective optimization strategy of 

lexicographical ordering (Section 4.1), compared with the user interaction model 

of the multi-objective optimization strategy of Pareto-Set / Skyline Query (Section 

4.2), and compared with the Pareto-Set based scheduling algorithm by Kllapi [34]. 

It is the overall goal of the conducted experiments to show the increased 

quality of results in regards to single-objective optimization strategies without an 

additional overhead in computation time. Furthermore, it is the goal of the 

conducted experiments to show an improved user interaction in terms of user 

response time and decision accuracy in regards to multi-objective optimization 

strategies without a loss of quality in terms of the results and without a generated 

computational overhead. 

 Normalized Weighted Sum Algorithm 4.1

4.1.1 Simulation Model 

In the described mobile-cloud database environment, each QEP consists of 

three costs: monetary cost for using the cloud provider, query execution time as 

time to run a query plan, and energy consumption on the mobile device. The last 

cost becomes important under the condition of using a cache on the mobile device 

to have the option of receiving partial or total requested data from the mobile 

device itself [7]. This obviously results in a lower monetary cost since the cloud 
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provider is less or not used, but also results in a higher amount of consumed 

energy since processing the cache consumes more energy than waiting for data to 

be retrieved from the cloud database. A full review of such a system is given in [5].  

The simulation to test the impact of NWSA in regards to single-objective 

optimization is built as follows: the simulation consists of one million experiments, 

where the proposed NWSA as well as the lexicographical ordering strategy have to 

choose a single QEP out of a set of 20 QEPs. The cost of each QEP is generated 

randomly within the following ranges: Monetary Cost (M) has a range of 0 up to 10 

cents and was chosen according to the current Amazon EC2 pricing models [2]; the 

range for query execution time was selected to be between 0 and 10 seconds 

(including data transfer time), and energy between 0 and 0.5 mAh. This simulation 

is repeated for multiple weight compositions. 

4.1.2 Simulation Results 

In comparison to the lexicographical ordering strategy the experimental 

results show two facts. First, the NWSA computes the same results under the same 

costs as the lexicographical ordering when focusing on only one objective. Second, 

NWSA produces negligible overhead in computing this selection. As it was already 

discussed in the previous sections, 2.2.1 and 3.1, both algorithms are running 

linear execution time related to the size of QEPs to choose from. That leads to a 

total algorithm execution time of less than one millisecond per experiment for both 

algorithms so that the difference is negligible. Concluding this comparison, 

negligible overhead is incurred and no higher cost alternatives results are selected. 
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Looking at the performance of NWSA, this evaluation shows the increased 

possibilities of this strategy to select QEPs with their trade-offs. 

 

Figure 19: Impact of Monetary Cost Weight on Total Monetary Cost of QEPs 
selected by NWSA 

 

 

Figure 20: Impact of Monetary Cost Weight on Total Execution Time of QEPs 
selected by NWSA 
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Figure 21: Impact of Monetary Cost Weight on Total Consumed Energy of 
QEPs selected by NWSA 

The different options on how to stress the weights on the different 

objectives can change the total cost in terms of monetary cost, execution time and 

energy consumption by a large margin as it can be seen in Figure 19, Figure 20, 

and Figure 21. The figures show the changes of the total cost of the one million 

chosen QEPs as the weight on monetary cost increases. The remaining weight is 

divided equally between execution time and energy consumption.  

It can be seen that when the monetary cost weight increases, the monetary 

costs decreases, while the query execution time and energy consumption increase. 

It is notable that the minimum and maximum values of an objective span a large 

gap, so the impact of having weights is easily seen. Having a small weight on one 

objective can lead to a big difference in the total cost.  

 It is notable that a consistent change in weights does not lead to an even 

distribution of points in the Pareto-Set. This well-known problem is analyzed by 

Das and Dennis [36]. 
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 User Study on Optimization Strategies 4.2

This section describes an evaluation of the difference between the user 

decision on a single QEP in the Skyline/Pareto Set model and the weight profile 

selection process needed by the NWSA. The goal of this user study is to compare 

the three approaches, the Skyline Query selection, the weight selection process in 

NWSA, and the preset weight profile selection of NWSA, in terms of the accuracy of 

the decision that a user makes and the amount of time the user needs to make such 

a decision. 

4.2.1 Simulation Model 

The participants of this user study, volunteers with and without a 

background in computer science, were given three sets of questions representing 

the decision a user has to make in the Skyline approach by selecting an alternative 

based on the given Pareto-Set (an example can be seen in Figure 22), the decision a 

user has to make in the NWSA approach by selecting weights to stress the different 

objectives (an example can be seen in Figure 23), and the decision based on the 

preset weight profiles including a logical description (an example can be seen in 

Figure 24). The sets appeared in alternating order for different participants of the 

study to remove any bias towards any of the three approaches because of the 

order of the sets. 

This study has been transposed to an easy equivalent multi-objective 

question so that no specific knowledge or large introduction to the field was 

needed. In each question, users are asked to select one alternative to buy a TV 

based on the given alternatives. In this transposition, a TV is equivalent to a QEP, 
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the monetary cost to purchase a TV is equivalent to the monetary execution cost, 

the delivery time is equivalent to the execution time, and the vendor reputation is 

equivalent to the energy consumption. With each question in a set, users are 

presented with 3, 5, 7, and 9 alternatives to choose from.  

 

Figure 22: User Study Set 1 representing the Skyline approach 
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Figure 23: User Study Set 2 representing the NWSA approach with weight 
profiles 

 

 

 

Figure 24: User Study Set 3 representing the NWSA approach with logical 
descriptions 
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4.2.2 Simulation Results 

The preliminary results of the user study show that the preset weight 

profile selection of NWSA given a logical description of a weight profile is by far the 

easiest decision in terms of both the time a user takes to make a decision and the 

accuracy of the decision. The participants in the study answered those decision 

questions in average nearly twice as fast (~42 seconds) as the decision with a 

given weight profile without logical description (~80 seconds). The participants 

needed similar time for selecting one solution out of the list of alternatives in the 

Skyline approach (~85 seconds). The accuracy of selecting the optimal answer was 

low for both the Skyline approach as well as the weight profile selection without 

logical description (both < 50%). In contrast to that, the participants selected the 

optimal alternative with accuracy greater than 80% given the logical descriptions 

from the study set 3. Furthermore, giving a participant more than five alternatives 

to choose from in the Skyline approach or in the NWSA approach without a logical 

description of weight profiles increases the time needed to make a decision 

significantly (increase of ~40%). Given a logical description of the weight profile in 

the NWSA approach reduced this increase to only 10% more time to answer a 

question of 7 or 9 alternatives compared to 5 given alternatives.  

 Performance study on the NWSA based scheduling algorithm 4.3

This section describes a performance study of the difference between the 

scheduling algorithm by Kllapi [34] (further referenced as Kllapi) and the 

proposed NWSA based scheduling algorithm (Section 3.3). There are two goals for 

this performance study. The first goal is to show that there is no loss in quality of 
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the computed QEPs by using NWSA. The second goal is to show that there is no 

generated overhead by using NWSA. We used HIVE [37] as the underlying 

database system for all experiments. Furthermore, we reduced the cost-

dimensions of a QEP to monetary cost and execution time since the experiment 

was conducted on the cloud without mobile interaction and therefore without 

energy consumption on a mobile device. This reduction has no impact on the 

scheduler itself.  

4.3.1 Simulation Model: Quality of the QEPs 

For this simulation model, we use the database schema and queries of the 

TPC-H benchmark [38]. We generated a data size of 2GB for the database using the 

given TPC-H dbgen. The simulation model was set for 20 containers, using two of 

each container-type specified in Figure 25. 

Container-Type Speed (in bytes/sec) monetary cost (in $/sec) 
1 3162277.5  1.0E-7 
2 1.0 E14 1.0E-6 
3 1.4 E14 1.9E-6 
4 1.7 E14 2.8E-6 
5 1.9 E14 3.7E-6 
6 2.1 E14 4.6E-6 
7 2.4 E13 5.5E-6 
8 2.5 E13 5.5E-6 
9 2.7 E13 7.3E-6 
10 2.9 E13 8.2E-6 

Figure 25: Container Specification 

We executed multiple instances for each of the 22 TPC-H queries, generated 

by TPC-H’s qgen, and compared the resulting QEPs of Kllapi to the resulting QEPs 

of NWSA. Since each instance of NWSA with a given weight profile results in a 

single QEP, we combined QEPs over different weight profiles defined as <x, 1-x> 
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for <weight_Time, weight_Money> with an increasing x of 0.05 to receive a curve of 

the computed QEPs.  

It is the goal of this simulation to show that the QEPs generated by Kllapi 

and generated by NWSA are equal. 

4.3.2 Simulation Model: Computation time of the schedulers Kllapi [34] and NWSA 

It is the goal of this simulation to show that the NWSA scheduler does not 

generate a significant overhead compared to the Kllapi scheduler. 

For this simulation model, we use the database schema and queries of the 

TPC-H benchmark [38]. This simulation has the purpose of exploring the effects of 

the parameters on the execution time of Kllapi and NWSA. To first show the 

differences of both schedulers under the average conditions (average database size 

and average number of containers), we show an extensive simulation of 

randomized types of the TPC-H queries. 2GB was selected as the average size of the 

database since the size of the database does not have a significant influence on the 

schedulers’ execution time (later proven in Section 4.3.4). Furthermore, a 

container limit of 20 containers was used since this was the maximum achieved 

parallelism without restricting the number of containers. Since both schedulers are 

dependent on the number of operators and containers, we modified the number of 

containers (from 4-100) and the underlying size of the database (2-10GB) for a 

second and third experiment..  
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4.3.3 Simulation Results: Quality of the QEPs 

Figure 26 and Figure 27 show the generated QEPs when using the NWSA 

scheduler and the Kllapi scheduler, respectively, on the TPC-H Query 1(Q1). It can 

be observed that the generated QEPs using NWSA are the elements of the 

generated QEPS using Kllapi. Furthermore, it can be observed that Kllapi 

generated 3 additional QEPs. This is the result of increasing the weight profile <x, 

1-x> in steps of 0.05. Since the missing QEPs are close to the other generated QEPs, 

the size of the steps is too large to catch these. Decreasing the size of the steps 

would generate the remaining QEPs. The experiments for the TPC-H Queries 2-22 

(Q2-Q22) show identical results. 

 The experiment shows that NWSA does not compute QEPs with a loss of 

quality in regards to the computed QEPs by Kllapi. There is no loss of QEPs and 

furthermore no QEPs in NWSA that are dominated by QEPs in Kllapi.  

 

Figure 26: Generated QEPs for TPC-H (Q1) by NWSA Scheduler 
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Figure 27: Generated QEPs for TPC-H (Q1) by Kllapi Scheduler 

 

4.3.4 Simulation Results: Computation time of the schedulers Kllapi [34] and NWSA 

Figure 28 and Figure 29 show the average execution time of Kllapi and 
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TPC-H queries. It can be observed that the NWSA scheduler needs in average about 

200 ms more to process a batch of 500 queries with heterogeneous containers and 
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Batch(500 queries) Kllapi (in ms) NWSA (in ms) 

Batch 1 1476 1753 

Batch 2 1705 1935 

Batch 3 1442 1789 

Batch 4 1567 1631 

Batch 5 1581 1896 

Batch 6 1480 1671 

Batch 7 1552 1646 

Batch 8 1489 1529 

Batch 9 1569 1870 

Batch 10 1422 1619 

Batch 11 1523 1797 

Batch 12 1436 1708 

Batch 13 1502 1734 

Batch 14 1398 1772 

Batch 15 1600 1839 

Batch 16 1344 1587 

Batch 17 1372 1522 

Batch 18 1569 1656 

Batch 19 1544 1569 

Batch 20 1383 1562 

Average per batch 1498 1704 

Average per query 2.9954 3.4086 

Figure 28: Average execution time of the Kllapi and NWSA Scheduling 
algorithms on Heterogeneous Containers 
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Batch(500 queries) Kllapi (in ms) NWSA (in ms) 

Batch 1 1063 1395 

Batch 2 1068 1416 

Batch 3 958 1348 

Batch 4 988 1338 

Batch 5 1183 1530 

Batch 6 1090 1466 

Batch 7 1077 1495 

Batch 8 969 1334 

Batch 9 910 1264 

Batch 10 1028 1424 

Batch 11 1089 1402 

Batch 12 987 1312 

Batch 13 991 1387 

Batch 14 934 1256 

Batch 15 977 1278 

Batch 16 937 1238 

Batch 17 944 1213 

Batch 18 1058 1440 

Batch 19 955 1311 

Batch 20 950 1305 

Average per batch 1008 1357 

Average per query 2.016 2.715 

Figure 29: Average execution time of the Kllapi and NWSA Scheduling 
algorithms on Homogeneous Containers 

Figure 30 and Figure 31 show execution times of Kllapi and NWSA when 

executing a batch of 500 instances of type randomized TPC-H queries with 

increasing number of containers. Since the additional overhead per query is in 

average less than one millisecond, we can consider this overhead negligible. 

Furthermore, given the TPC-H queries, the resulting QEPs only achieve a maximum 

parallelism of up to 20 containers. Up to 20 containers, the additional overhead 

per query is barely measurable. 
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Figure 30: Influence of the number of heterogeneous containers on the 
execution time of the Kllapi and NSWA Scheduling algorithms  

 

Figure 31: Influence of the number of homogeneous containers on the 
execution time of the Kllapi and NWSA Scheduling algorithms 
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does not seem to have a relevant effect on the generated overhead. The averaged 

overhead per query is less than one millisecond and is therefore negligible. 

 

Figure 32: Influence of the database size on the execution time of the Kllapi 
and NWSA Scheduling algorithms 

All conducted experiments show negligible overhead generated by the 

NWSA scheduler in regards to the Kllapi scheduler [34]. 

 Summary of Experiment Results 4.4

The first overall goal of the conducted experiments was to show the 

increased quality of QEP results produced by the proposed model, NWSA, 

compared to the single-objective optimization strategies without an additional 

overhead in computation time. This hypothesis is confirmed by the results of the 

experiments reported in Section 4.1. 

Furthermore, it was the goal of the conducted experiments to show an 

improved user interaction in terms of user response time and decision accuracy 

compared to the multi-objective optimization strategies without a loss of quality in 

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10e
x

e
cu

ti
o

n
 t

im
e

 p
e

r 
b

a
tc

h
 (

in
 m

s)
 

Data size (in GB) 

NWSA Kllapi*



52 

terms of the results and without a generated computational overhead. The results 

of the first part are shown in the experiments reported in Section 4.2, where the 

user case study shows an improved accuracy and response time of a user when 

selecting the logical descriptions of the weight profiles over the weight profiles or 

the query execution plans. The second part was shown in the experiments 

reported in Section 4.3, where the proposed scheduling NWSA algorithm (NWSA-

S) was compared with the multi-objective optimization scheduling algorithm by 

Kllapi [34]. NWSA-S does not generate a significant overhead and has no loss in 

quality of the computed QEPs. 
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Chapter 5: Conclusion and Future Work 

This thesis presents a multi-objective optimization (MOO) strategy, named 

Normalized Weighted Sum Algorithm (NWSA). It is its goal to solve the multi-

objective optimization problem with the use of user preferences on optimization 

objectives (weight profile). The experiments evaluating NWSA in the context of a 

mobile-cloud query optimization have been presented. NWSA is able to select the 

query execution plan that is an element of the Pareto set, while avoiding the 

expensive cost of computing the Pareto set. NWSA is highly adaptable to any multi-

objective decision problem since it is not limited to any number of objectives as 

pointed out in section 3.1. The experimental results show that NWSA incurs 

negligible computational overhead in comparison to the existing lexicographical 

ordering strategy. 

Furthermore, this thesis presents a new user interaction model for NWSA 

and MOO strategies, introducing the user-types of query executing users and 

superusers. With superusers, who are aware of query execution constraints, 

presetting weight profiles, query executing users can select these weight profiles 

and are not burdened with the decision on a query execution plan (QEP). These 

QEPs are generated in the process of multi-objective query optimizations (MOQO) 

in terms of monetary cost, execution time, and energy consumption of a query. 

This model was compared with the existing user-interaction of the Skyline/Pareto 

Set approach within a user study. The comparison shows that the user interaction 

of deciding on a Pareto optimal QEP, which is necessary while using the Skyline 

approach, can be eliminated by using NWSA. The user study shows that using a 
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logical description of a weight profile substantially increases the accuracy of a 

query executing user selecting the optimal alternative and also speeds up the time 

a user needs to select his/her answer. These weight profiles can be preset by a 

superuser, calculated based on possible constraints. This process can be done 

using the superuser interface we have developed and presented in this thesis.  

Finally, this thesis presents a scheduler for query processing based on 

NWSA (called NWSA-S). With the implementation of NWSA-S, query processing 

utilizes the previously explained improvements in user interactions with MOQO. 

Experiments, in which NWSA-S is compared to a multi-objective Pareto-Set based 

scheduler by Kllapi [34] show no significant generated overhead in execution time 

of the scheduler and also shows no loss in quality of the computed QEPs, leaving 

the improved user interaction as benefit without additional cost. 

 Future Work 5.1

As shown in Section 3.3.1, the developed greedy-based scheduler NWSA-S 

has a significant trade-off between computational complexity and finding the 

global optimum. Evolutionary algorithms [10] or heuristics [18] can potentially 

improve the quality of this algorithm. These strategies are able to search for the 

global optimum which would increase the quality of the selected QEP. 

Another future work is the integration of NWSA in a cache replacement 

policy to extend semantic caching [7]. Based on the computed score of a QEP, the 

new policy can help to keep more valuable data in the semantic cache [39]. The 

higher the score of data in the cache, the higher the cost to regain those results will 
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be (the recovery cost value). This could replace the often used metrics of 

minimizing cache misses. 

Finally, the existing mobile prototype for query executing users needs to be 

assembled with the query processing prototype on the cloud site. The interfaces of 

the query processing prototype for entering queries and the mobile prototype for 

executing a query are highly adaptable, based on the fact that the interfaces of both 

components match each other. This process also enables simulations to include 

energy consumption as an objective for the scheduler. 
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