
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MULTI-OBJECTIVE QUERY OPTIMIZATION FOR MOBILE-CLOUD DATABASE

ENVIRONMENTS BASED ON A WEIGHTED SUM MODEL

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

FLORIAN HELFF

 Norman, Oklahoma

2016

MULTI-OBJECTIVE QUERY OPTIMIZATION FOR MOBILE-CLOUD DATABASE

ENVIRONMENTS BASED ON A WEIGHTED SUM MODEL

A THESIS APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY

Dr. Le Gruenwald, Chair

Dr. Laurent d'Orazio

Dr. Changwook Kim

© Copyright by FLORIAN HELFF 2016

All Rights Reserved.

iv

Acknowledgements

I would like to thank Dr. Le Gruenwald, chair of my thesis committee and my

supervisor at the University of Oklahoma, as well as Dr. Laurent d’Orazio, member

of my thesis committee and member of the MOCCAD research team, for their

guidance, leadership and support during my Master’s studies. Furthermore, I

would like to thank Dr. Changwook Kim for his interest in my thesis project and for

being part on my thesis committee.

 I would like to thank Mr. Chenxiao Wang for his help on challenging ideas

and I would like to thank Mrs. Virginie Perez Woods for her help as Academic

Programs Coordinator and designated CS-Mom.

 I also would like to thank the National Science Foundation (NSF) for

partially funding my thesis.

 Finally, I would like to thank my fiancée Sara Collins for her support,

encouragement and endless hours of proofreading.

 This material is based upon work supported in part by the National Science

Foundation under Grant No.1349285. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author and do not

necessarily reflect the views of the National Science Foundation.

v

Table of Contents

Acknowledgements .. iv

List of Figures .. vii

Abstract ... ix

Chapter 1: Introduction .. 1

 Definitions ... 1 1.1

1.1.1 Cloud Environment ... 1

1.1.2 Mobile-Cloud Environment ... 2

 Problem Definition ... 3 1.2

 Organization of the Thesis .. 5 1.3

Chapter 2: Literature Review.. 6

 Query Processing .. 6 2.1

 Multi-Objective Optimization .. 8 2.2

2.2.1 Lexicographical Ordering ... 9

2.2.2 Pareto-Set Optimization and Skyline Queries ... 10

2.2.3 Scoring Function ... 13

2.2.4 Weighted Sum Model .. 14

Chapter 3: Proposed Solution and Architecture ... 16

 Normalized Weighted Sum Algorithm .. 16 3.1

3.1.1 Algorithm ... 19

3.1.2 Proof for Pareto-Set ... 20

 User Interaction Models for NWSA and Pareto Set .. 21 3.2

vi

3.2.1 Superuser Interface ... 23

 Normalized Weighted Sum Algorithm Based Scheduling Algorithm 26 3.3

3.3.1 Trade-off of NWSA-S_G... 31

 Proposed Architecture .. 34 3.4

Chapter 4: Evaluation and Results ... 36

 Normalized Weighted Sum Algorithm .. 36 4.1

4.1.1 Simulation Model.. 36

4.1.2 Simulation Results ... 37

 User Study on Optimization Strategies ... 40 4.2

4.2.1 Simulation Model.. 40

4.2.2 Simulation Results ... 43

 Performance study on the NWSA based scheduling algorithm 43 4.3

4.3.1 Simulation Model: Quality of the QEPs .. 44

4.3.2 Simulation Model: Computation time of the schedulers Kllapi [34]

and NWSA .. 45

4.3.3 Simulation Results: Quality of the QEPs .. 46

4.3.4 Simulation Results: Computation time of the schedulers Kllapi [34]

and NWSA .. 47

 Summary of Experiment Results ... 51 4.4

Chapter 5: Conclusion and Future Work ... 53

 Future Work .. 54 5.1

References ... 56

vii

List of Figures

Figure 1: Amazon Web Service prices - EC2- On-Demand Pricing [2] 2

Figure 2: Mobile-Cloud Database Architecture .. 4

Figure 3: Query Processing Steps .. 7

Figure 4: Lexicographical Ordering: Execution Plan Costs Example 9

Figure 5: 2-Dimensional Pareto Set Optimization ... 11

Figure 6: 2-Dimensional Scoring Function ... 13

Figure 7: Weighted Sum Model Scoring Function .. 15

Figure 8: Modified Weighted Sum Model Scoring Function ... 17

Figure 9: Composite Normalized Weight Factor .. 18

Figure 10: Modified Weighted Sum Model Scoring Function: Optimal Alternative 18

Figure 11: Algorithm 1: NWSA - Decision Algorithm .. 19

Figure 12: User Interaction Models: Pareto-Set Approach and NWSA Approach ... 22

Figure 13: The Superuser Interface ... 24

Figure 14: The Superuser Interface including a constraint selection on monetary

cost.. 25

Figure 15: Algorithm 2: NWSA based scheduling algorithm (NWSA-S) 26

Figure 16: Algorithm 3: Scheduler: NWSA Greedy .. 29

Figure 17: Trade-off example NWSA-S_G .. 33

Figure 18: Proposed Mobile-Cloud Database Architecture .. 35

Figure 19: Impact of Monetary Cost Weight on Total Monetary Cost of QEPs

selected by NWSA ... 38

viii

Figure 20: Impact of Monetary Cost Weight on Total Execution Time of QEPs

selected by NWSA ... 38

Figure 21: Impact of Monetary Cost Weight on Total Consumed Energy of QEPs

selected by NWSA ... 39

Figure 22: User Study Set 1 representing the Skyline approach 41

Figure 23: User Study Set 2 representing the NWSA approach with weight profiles

 .. 42

Figure 24: User Study Set 3 representing the NWSA approach with logical

descriptions ... 42

Figure 25: Container Specification ... 44

Figure 26: Generated QEPs for TPC-H (Q1) by NWSA Scheduler 46

Figure 27: Generated QEPs for TPC-H (Q1) by Kllapi Scheduler 47

Figure 28: Average execution time of the Kllapi and NWSA Scheduling algorithms

on Heterogeneous Containers ... 48

Figure 29: Average execution time of the Kllapi and NWSA Scheduling algorithms

on Homogeneous Containers ... 49

Figure 30: Influence of the number of heterogeneous containers on the execution

time of the Kllapi and NSWA Scheduling algorithms .. 50

Figure 31: Influence of the number of homogeneous containers on the execution

time of the Kllapi and NWSA Scheduling algorithms .. 50

Figure 32: Influence of the database size on the execution time of the Kllapi and

NWSA Scheduling algorithms .. 51

ix

Abstract

In mobile-cloud database environments, users request services executed on a

cloud through mobile devices. Requested data might be partially cached on the

mobile device itself or must be processed on the cloud which leads to multiple

contradicting cost objectives such as monetary cost to use the cloud service, query

execution time on the cloud or on the mobile device, and mobile device energy

consumption. Choosing an optimal query execution plan is crucial for query

optimization to minimize the overall cost, but is related to user preferences on

those various costs. Single-objective optimization strategies are impractical since

those do not consider tradeoffs between different costs. The existing multi-

objective optimization strategies of Pareto-Set and Skyline Query lack a

sophisticated user interaction since the resulting set tends to be large in size which

makes it difficult for a user to select a tradeoff between costs. Furthermore, a user

might not be aware of query cost constraints which makes his/her decision

process impossible. To fill this gap, this thesis presents the multi-objective

Normalized Weighted Sum Algorithm with its novel user-interaction model, using

weights associated with cost objectives for query optimization which can be set

prior to execution. The proposed model is compared with one- and multi-

dimensional optimization strategies in terms of result quality and user interaction.

Experiments show that the proposed solution improves the result quality

regarding single-objective strategies (lexicographical ordering) and improves user

interaction with multi-objective optimization strategies (Pareto-Set / Skyline

Query) in terms of user response time and decision accuracy.

1

Chapter 1: Introduction

This chapter will introduce the problem domain. Section 1.1 introduces domain

specific definitions and explains the given environment. Section 1.2 follows the

problem definition and section 1.3 gives an overview about the following Chapters

and organization of this thesis.

 Definitions 1.1

1.1.1 Cloud Environment

The main characteristic of a cloud service is the high computing elasticity

and resource management. Elasticity is defined as horizontal elasticity, when

increasing the number of nodes (physical machines) a service is executed on, and

vertical elasticity, when increasing the computation power and/or memory of

nodes [1]. An example of elasticity can be seen in Figure 1 which represents

Amazon’s “Web Service prices - EC2 - On-Demand Pricing” [2]. In Amazon’s price

scheme, they offer different types of nodes with different computation power and

memory for different rates. Assuming that a higher computation power/memory

leads to a faster response time of services, cloud environments introduce the

trade-off between service execution time and service monetary cost since one

objective cannot be optimized without weakening the other objective.

2

Figure 1: Amazon Web Service prices - EC2- On-Demand Pricing [2]

1.1.2 Mobile-Cloud Environment

The importance of mobility is the driving factor in the field of mobile

computing. Independent of their position, users request services through their

mobile devices. Nevertheless, with the advantage of transportable devices to

guarantee mobility comes the trade-off of limited resources and computational

power. This limitation leads to mobile-cloud computing [3, 4] and a mobile-cloud

database environment [5], where a user issues a service request to the cloud from

a mobile device to obtain data. This requested data is either stored on the cloud or

retrieved from a cache on the mobile device. In addition to the two cost objectives

3

explained in Section 1.1.1, energy consumption on the mobile device is an

additional cost to monetary cost and execution time.

 Problem Definition 1.2

With monetary cost, query execution time and energy consumption, query

scheduling is a multi-objective optimization problem. Based on the elasticity of the

cloud (considering different cloud pricing models, such as AWS [2] and MS Azure

[6]) and the possible execution of a query on a mobile device, a query can be

executed in multiple ways, each with a distinct combination of costs. This

optimization process is a strain of contradicting objectives as usually a faster

execution leads to a higher monetary cost, which makes Multi-Objective Query

Optimization a crucial problem to the mobile-cloud environment.

It is the goal of this thesis to develop an algorithm that can determine an

optimal way to execute a query based on the preferences of a user without

burdening him/her with complex user interactions. This algorithm will be based

on the architecture of a mobile cloud database environment proposed in [7] which

is shown in Figure 2. In this figure, a user is using a mobile device to issue a query

that needs to access the database stored on the cloud (Step 1: Issue Query). This

user can be seen as a client of the cloud database services. The site of the mobile

device distinguishes itself from the other sites through the high mobility but

limited resources and computational power.

After the query is issued, the implemented query cache on the mobile

device is checked if the data requested by the query is already available in the

cache [7] (Step 2). If the data is not available, the query is forwarded through the

4

data owner (Step 3) to the Cloud Services (Step 4). The data owner is owner of any

produced data and is responsible for it. For example, it can be a business like a

university or hospital, which is producing data and utilizes cloud services to store

and process it. On the cloud, the query will be optimized during the step of query

processing (Step 5). On the cloud site, based on its high elasticity, there may exist

multiple ways for executing a query. Those options are defined by the available

cloud resources (nodes) and result in a multi-dimensional cost.

After a way to execute the query (Query Execution Plan) is selected, the

query will be executed (Step 6) and query results are received. This process is

explained in more detail in Section 2.1. The query results are forwarded through

the data owner (Step 7) to the user (Steps 8 and 9). Finally, based on the

implemented cache replacement policies, the cache will be updated based on the

last query (Step 10).

Figure 2: Mobile-Cloud Database Architecture

5

 Organization of the Thesis 1.3

The rest of the thesis is organized as follows. Chapter 2 presents the query

processing background and a literature review on the topic of multi-objective

query optimization. Chapter 3 presents the proposed solution, the Normalized

Weighted Sum Algorithm (NWSA), the associated user interaction models, a NWSA

based scheduling algorithm, and the proposed architecture including the

preceding aspects. Chapter 4 describes the experiments conducted to study the

performance of the proposed solution and their results. Finally, Chapter 5 provides

the conclusions and presents future work.

6

Chapter 2: Literature Review

Chapter 2 contains the literature review, describing fundamental and

related work. Section 2.1 focusses on Query Processing and the different steps

needed for it, followed by section 2.2 describing different multi objective

optimization strategies.

 Query Processing 2.1

Query processing processes an input query to compute its final query

execution plan (QEP) and then executes this QEP to obtain the requested query

data [8]. Query Processing is realized in multiple steps shown in Figure 3.

7

Data Owner Cloud Services

2: Query Parser

3: Optimizer

4: Task Generator

5: Scheduler

Execute

8: Send Results

logical tree

physical tree

DAG & operator
estimation

the "optimal"
QEP

1: Send Query

Figure 3: Query Processing Steps

After receiving a query (Step 1), the query parser converts the query into a

logical query plan also known as a logical tree (Step 2). This tree uses relational

algebra to eliminate the query language specific syntax. The optimizer then

processes the logical tree in Step 3 using algebraic transformations to optimize the

tree. An example of optimization is “pushing down” an early selection in the tree.

This optimization usually reduces the size of an algebraic relation, which then

results in a faster execution of the following operations. After applying algebraic

transformations to get an optimized tree, the task generator (Step 4) will then use

8

the database statistics on the data size of the relations involved in the query to

further optimize the tree and to convert the query operators from the tree into

algorithms. This, for example, can include replacing join operators by next-loop

join or hash join algorithms, or choosing a method for selection operators. The

final step (Step 5) before executing the query is completed by the scheduler, which

assigns each operator to a node and to a container on a node where the operator

should be executed. This assignment is crucial because it defines the costs of a

query in terms of monetary cost that must be paid to the cloud service provider,

execution time and energy consumption based on the pricing models of the used

nodes. Each possible assignment combination of operators to containers

represents a possible query execution plan (QEP); all of them will yield the same

results when executed, but consist of different associated costs. It is the task of a

multi-objective optimization strategy to find the best QEP in terms of its costs for

execution.

 Multi-Objective Optimization 2.2

Multi-Objective Optimization is a crucial process in the mobile cloud

environment. Based on the different occurring costs explained in Section 1.1 and

Section 2.1, it is the goal of a multi-objective optimization strategy to find a trade-

off among the given contradicting objectives of a QEP. Section 2.2.1 will provide an

introduction of the state of the art single-objective optimization and explanations

for why those strategies are not suitable for multi-objective optimization

problems. Next, Section 2.2.2 and Section 2.2.3 will give an introduction of multi-

objective optimization using Pareto-Set Optimization, Skyline Queries and Scoring

9

Functions. Finally, Section 2.2.4 gives an introduction to the Weighted Sum Model,

which is the foundation of the proposed solution in Chapter 3.

2.2.1 Lexicographical Ordering

A user-friendly decision strategy to find the optimal QEP in terms of costs is

the lexicographical ordering [9]. Lexicographical ordering focuses on a single main

objective, such as execution time, and orders further objectives, like monetary cost

and energy consumption, in a descending order. The complexity of lexicographical

ordering is in linear relation to the count of alternatives it selects its solution from

because it scans the alternative once for the lowest parameter. While it is an easy

executable strategy, lexicographical ordering is not a feasible solution for multi-

objective optimization as shown in following example:

Figure 4: Lexicographical Ordering: Execution Plan Costs Example

Considering the three query execution plans (QEPs) with their costs for

monetary costs (M), execution time (T) and energy consumption (E) shown in

Figure 4, focusing on a single objective always leads to the decision to select either

plan QEP1 or QEP2 for execution since these QEPs have a minimum cost in one of

the three objectives. Since QEP3 does not have a minimum value in any of the three

costs, it will never be selected although it is a competitive choice when considering

QEP1: {M= $0.080; T= 0.5s; E= 0.012 mA}

QEP2: {M= $0.050; T= 3.0s; E= 0.300 mA}

QEP3: {M= $0.055; T= 0.6s; E= 0.013 mA}

10

all three objectives on the same level of importance. Therefore, a strategy which

considers all objectives at the same time is needed in order to make a

comprehensive decision in a multi-objective optimization environment.

2.2.2 Pareto-Set Optimization and Skyline Queries

This section describes the Pareto-Set Optimization, which is fundamental

for every Multi-Objective Optimization problem. The goal of this optimization is

the calculation of a set of non-dominated alternatives, the Pareto-Set. An

alternative ‘A’ is dominating an alternative ‘B’ if at least one objective (decision

variable) of ‘A’ is better than the associated objective in ‘B’ and all other objectives

in ‘A’ are at least equal to the associated objectives in ‘B’. Those dominating

alternatives are called Pareto-Optimal [10, 11]. In the context of query

optimization, every alternative represents the costs of a single QEP.

Figure 5 gives an example for a two-dimensional Pareto-Set query

optimization. Alternatives a, b, and c are not dominated by any other point in this

graph, since there exists no alternative with better cost values for both objectives.

The covered squares of a point represent the dominated area of an alternative.

Every point lying within a covered square is dominated by the alternative

spanning the square.

Skyline queries [12, 13, 14] are one example of a strategy used to find a

Pareto-Set. The definition of a Skyline Query is similar to a Pareto-Set. The result

of a skyline query is called a skyline. This skyline contains objects which fulfill the

requirements of not being dominated by another object in terms of a given utility

11

function [15]. Skyline queries were first mentioned in 2001 where three basic

skyline computations were introduced [16].

Figure 5: 2-Dimensional Pareto Set Optimization

Much research has been conducted to optimize the Pareto Set / Skyline

algorithm itself [17]. Query optimization techniques to speed up the calculation

time and sizing down the resulting set using heuristics [18] and preprocessing [19]

were introduced in the research by I. Trummer and C. Koch. Those techniques are

needed since the calculation of all possible QEPs is not computable.

12

However, the major drawback of a Pareto-Set/Skyline Query is the resulting

set of alternatives, which tends to be very large in size so that users are left with a

choice to select a single QEP out of a large pool of possible solutions [20]. Research

on the size of a Pareto-Set already estimated its size to be Θ((ln 𝑛)𝑑−1 / (𝑑 − 1)!)

for n data objects and d objectives, assuming attribute independence [21, 20]. This

problem was addressed by Lee et al. [15] by providing a way of reducing the

skyline to a size manageable by users. Users are repeatedly asked about their

preference between two chosen objectives. These questions are designed

according to the answer’s impact on the size of the skyline to minimize user

interaction, but the approach still uses multiple user interactions.

Furthermore, the research on Skyline Queries neglects the fact that the user

executing the query might not be aware of all constraints on the different costs to

select a sophisticated QEP. In the use case of a larger organization, a query

executing user might know the restrictions on execution time and energy

consumption but might be unaware of the monetary cost he/she is allowed to

spend since a budget is often centrally managed by his/her supervisor. An

approach is needed to separate query executing users from another type of users,

whom we call superusers, who do not execute queries, but know and have

authorities to set the restrictions on the queries.

In summary, the skyline approach makes it possible for the user to consider

multiple objectives at the same time, but also burdens the user with the crucial

decision to select the final QEP.

13

2.2.3 Scoring Function

Figure 6: 2-Dimensional Scoring Function

The strength of finding a Pareto-Set is that every alternative in this set is

optimal for at least one scoring function. A scoring function describes a specific

stress configuration on the different objectives in order to set the importance to

them and to compare alternatives in this Pareto-Set [22]. A disadvantage of a

scoring function is that the stresses on objectives have to be defined prior to

execution whereas the Pareto-Set does not require any further input besides the

14

QEPs. An advantage of a scoring function is that users do not have to select a QEP

out of a set since a specific scoring function only has one optimal solution. Figure 6

shows a scoring function (blue): every point in this two-dimensional space will be

projected (green) on a linear function using the stresses. The value of this

projection (the intersection of the green projection and the blue scoring function)

is the score. The alternative with the minimum score is an element of the Pareto-

Set as proven in Section 3.1.2 and [23].

2.2.4 Weighted Sum Model

The Weighted Sum Model (WSM) [24, 25, 26] is most commonly used in

multi-objective optimization problems. In this model, every possible alternative (a

QEP in our application) is rated by a score. The score for each alternative includes

all objectives, which are individually weighted to stress the importance of different

objectives. This model is used in many multi-objective optimization problems in

various fields of computer science, such as network and optimization problems

[27, 25] , and also other fields such as economics (Cost-Utility Analysis) [28, 29].

The formulas used in this model are shown in Figure 7.

In these formulas, the WSM-score for an alternative Ai denoted as

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 is calculated by adding the products of a weight 𝑤𝑗 with its

corresponding parameter 𝑎𝑖𝑗, the value of this objective. This parameter is, for

example, the monetary cost which has to be spent to execute the query. A set of

weights 𝑤𝑗 for every parameter 𝑎𝑗 is called a weight profile (WP).

15

The best alternative is chosen as the one which has the maximum WSM

score (𝐴∗
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒). The different objectives are assumed to be positive: the higher

the score, the better the alternative. Assuming the objectives to be negative (in

case of cost models), the best alternative has equivalently the lowest score.

Figure 7: Weighted Sum Model Scoring Function

The weakness of this model is the process of summarizing the different

objectives. The fact that different objectives might have different dimensions and

units leads to the problem of adding apples and oranges [30]. Since the mobile-

cloud database environment has to deal with multi objectives with different units,

the Weighted Sum Model cannot be used without major changes in its strategy.

 This section described different strategies for multi-objective optimization.

I showed that the common lexicographical ordering is not suitable for the decision

on multiple objectives and showed the disadvantages of Pareto-Set optimization in

terms of user interaction. Furthermore, I introduced the concept of the weighted

sum model, which I will expand in Chapter 3 to fit the described problem domain.

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1

𝐴∗
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = max

𝑖
∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1

16

Chapter 3: Proposed Solution and Architecture

This chapter presents the proposed multi-objective optimization strategy,

the Normalized Weighted Sum Algorithm (NWSA), and its effects on user

interaction, query scheduling algorithm and system architecture. Specifically,

Section 3.1 describes the algorithm itself and compares it to the multi-objective

optimization strategy of Pareto-Sets. Section 3.2 discusses the user interaction

with NWSA, compares it to the user interaction with Pareto-Sets, explains the

concept of “superusers” and “query executing users”, and demonstrates a

developed sophisticated superuser interface to highlight the advantage of user-

type separation. Section 3.3 then incorporates NWSA into a generic greedy query

scheduler and discusses its impact. Finally, Section 3.4 explains the impact of

NWSA to the existing mobile-cloud database architecture [7], previously explained

in Section 1.1.2.

 Normalized Weighted Sum Algorithm 3.1

This section describes the proposed algorithm called the Normalized

Weighted Sum Algorithm (NWSA), the implementation details and the proof

showing that NWSA always selects a query execution plan from the Pareto-Set.

As already pointed out in Section 2.2.4, one problem of the WSM is the

addition of multiple dimensions or units. This problem can be resolved by

normalizing the different parameters [25]. This normalization can be done in

relation to a user-defined maximum of acceptance of each objective. The resulting

values represent the fraction towards this maximum and do not contain a unit

which makes them addable to each other. This normalization to a user-defined

17

maximum of parameters adapts the ideas by Goh and Cheng [31] of a user-based

decision to eliminate constraint violating alternatives. Another advantage of this

user-defined maximum of acceptance of each objective can be seen in the

implementation of the algorithm, shown in Section 3.1.1. Alternatives which

violate those regulations can be taken out of consideration to follow the defined

conditions.

The second adjustment for NWSA regarding the general WSM is done in

regards to the weights. To include environmental factors, the used weight is

composed of a user-defined weight and an automatically generated environmental

weight. Environmental factors are, for example, the current battery status, an

ongoing charging process or factors describing the currently used cloud. The

environmental weight can adjusts the user weight if, for example, a mobile device

is being charged and energy consumption is obsolete, or a query is run overnight

and execution time should be assigned a minor importance factor. If all

environmental weights are kept equal, those will not have an impact on the

previously defined user weight. The experiments of Chapter 4 will not further

study a modification by environmental weights.

In conclusion, the Modified Weighted Sum Model Scoring Function can be

expressed as in Figure 8.

𝐴𝑖
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑗

𝑎𝑖𝑗

𝑚𝑗

𝑛

𝑗=1

Figure 8: Modified Weighted Sum Model Scoring Function

18

The function consists of following variables: 𝑎𝑖𝑗 is the value of alternative i

(QEPi) for objective j, 𝑚𝑗 the user-defined acceptable maximum value for objective

j, and 𝑤𝑗the normalized composite weight of user and environment for objective j

defined in Figure 9.

𝑤𝑗 =
𝑢𝑤𝑗 ∗𝑒𝑤𝑗

∑(𝑢𝑤 ∗𝑒𝑤)
.

Figure 9: Composite Normalized Weight Factor

Figure 9 shows the computation of the composite weight where uwj and ewj

describe the weight of the user and the environmental weight for objective j,

respectively. Since the different objectives are representative of different costs, the

algorithm chooses the alternative with the lowest score to minimize costs as

shown in Figure 10. It can be noted, that the number of different alternatives does

not influence this algorithm which makes NWSA adaptable to any number of

different objectives.

𝐴∗
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = min

𝑖
∑ 𝑤𝑗

𝑎𝑖𝑗

𝑚𝑗

𝑛

𝑗=1

Figure 10: Modified Weighted Sum Model Scoring Function: Optimal
Alternative

In the following Section 3.1.1, the proposed algorithm is described. It is then

followed by a proof showing that the chosen alternative in this decision process is

always an element of the corresponding Pareto-Set, which is independent of the

chosen weights.

19

3.1.1 Algorithm

Algorithm 1: NWSA- Decision Algorithm

Input:

Alternatives Ai with i=1..m and parameter aij to objective Oj with j=1..n ;

uwj the user weight for objective Oj;

ewj the environment weight for objective Oj;

mj the maximum accepted value for objective Oj

Output: best alternative Ai

1. Abest  null
2. AbestRestrictionViolating  null

3. for i=1 to m
4. Ai

score  CalculateScore(Ai) //calcualte NWSA-scores
5. end for

6. for i=1 to m
7. violate  false
8. for j=1 to n
9. if(aij>mj)
10. violate  true //check alternative for constraint violation
11. save violation
12. end if
13. end for
14. if(violate=true)
15. if(Ai

score< AbestRestrictionViolating
score)

16. AbestRestrictionViolating  Ai //check if the current alternative is the best one
17. end if
18. else
19. if(Ai

score < Abest
score)

20. Abest  Ai
21. end if
22. end if
23. end for

24. if(Abest  null)
25. return AbestRestrictionViolating , violations //returns the best alternative with its violation
26. else
27. return Abest //returns the best alternative
28. end if

Figure 11: Algorithm 1: NWSA - Decision Algorithm

20

The developed algorithm is shown in Figure 11. Its goal is to calculate the

best alternative in a multi-objective decision process.

The modified WSM function to calculate the score of an alternative Ai

(CalculateScore(Ai)), which is used in Line 5 of this algorithm, is the previously

defined function in Figure 8. This function is executed for every alternative (Lines

3-5). As it can be seen in this algorithm, each alternative is checked to see if it

violates the user-defined maximum value for each objective (Lines 8-13). The

violation itself has to be saved for future use (Line 11). Afterwards, the best

alternative (Abest), which is the one with the lowest score, is selected (Lines 14-22)

and returned as the output of the algorithm. If all possible alternatives violate

those restrictions, the algorithm will return the lowest score alternative

(AbestRestrictionViolating) as well as the previously saved restriction(s) that it violates

(Lines 24-25). The complexity of this algorithm is in linear relation to the count of

alternatives, which is also the complexity of the lexicographical ordering strategy

as discussed in Section 2.2.1. The linear complexity of the given algorithm is based

on the single iteration over all alternatives with each iteration having a constant

complexity.

3.1.2 Proof for Pareto-Set

This section provides a proof demonstrating that, independent of possible

weights and the number of objectives, the proposed algorithm always picks an

alternative within the Pareto-Set.

21

Proof by contradiction:

It is assumed that the chosen algorithm picks an alternative Abest which is not an

element of the Pareto-Set. In compliance with the used formula in the proposed

algorithm (Figure 8) it can be determined that:

𝑨𝒃𝒆𝒔𝒕
𝑾𝑺𝑴−𝒔𝒄𝒐𝒓𝒆 = ∑ 𝒘𝒋𝒂𝒊𝒋

𝒏

𝒋=𝟏

= 𝐦𝐚𝐱
𝒊

∑ 𝒘𝒋𝒂𝒊𝒋

𝒏

𝒋=𝟏

Since Abest is not an element of the Pareto-Set, an alternative Apareto has to exist

which dominates Abest. According to the definition of the Pareto-Set, this

alternative has one higher value for at least one criterion than Abest without having

a lower value for all other objectives. This is in contradiction to

𝐴𝑏𝑒𝑠𝑡
𝑊𝑆𝑀−𝑠𝑐𝑜𝑟𝑒 = max

𝑖
∑ 𝑤𝑗𝑎𝑖𝑗

𝑛

𝑗=1

since the score is better for Apareto with unchanged weights. A similar proof is

shown by Zadeh [32] and in the context of skyline queries is shown by Chomicki

[12].

 User Interaction Models for NWSA and Pareto Set 3.2

Figure 12 shows the user-interaction models for Skyline Queries / Pareto-

Set and NWSA, respectively. Comparing both models shows that both approaches

have the query as input and use the Pareto-Set algorithm or NWSA algorithm,

respectively, to handle the request. In addition to the query, NWSA also requires

the input of a weight profile to stress the objectives. The result of the Pareto-Set

algorithm is the set of Pareto-Optimal alternatives. It is the task of a user to

22

manually select one of the given alternatives for execution of the query. This

decision on the Pareto-Set to select a single alternative is eliminated in the user

interaction model of the NWSA approach. The NWSA algorithm directly computes

a single optimal solution based on the given weight profile.

Input:
Query

Pareto Set / Skyline
Algorithm

Result: Pareto Set /
Skyline

User Decision on
Pareto Set / Skyline

Result: Single QEP

Offline:
Set Weight Profiles

Input:
Query

User Decision on
Weight Profile

NWSA Algorithm

Result: Single QEP

Pareto Set Approach NWSA Approach

Figure 12: User Interaction Models: Pareto-Set Approach and NWSA
Approach

The fact that user preferences/weights can be preset prior to execution of

the algorithm is another advantage NWSA has over the Pareto-Set approach. To

23

take advantage of being able to preset weight profiles, we propose two types of

users: users that preset weight profiles (superusers) and users that invoke the

execution of a query (query executing users). A weight profile based on the

application requirements can be preset by a superuser who is aware of all

constraints on the different objectives. This weight profile can then be selected by

a user executing the query, which is minimizing the decisions he/she has to make.

Furthermore, a weight profile can be described by an application-based logical

description, such as “emergency query” or “batch query”, to describe the

preferences a weight profile reflects. In the example of emergency queries or batch

queries, the description would reflect a weight profile with high importance on

execution time or low importance on execution time, respectively. The number of

different weight profiles is directly influenced by the superuser. This number

should be kept low (5 or less) to not burden the query executing user with a

difficult decision on a weight profile. A decision on a large number of weight

profiles would be similar to a decision on a Pareto-Set, which we try to avoid. This

aspect is shown in the experiment shown in section 4.2. A real world example

would be the number of possible shipping types when ordering an item: a large

number of shipping options would complicate the decision process whereas a

decision on just a few alternatives is specific enough to find the desired trade-off.

3.2.1 Superuser Interface

Taking advantage of being able to preset weight profiles by superusers and

making the decision simple for executing users still leaves a superuser with

his/her decision on how to set weight profiles. A sophisticated example for a

24

superuser interface to setup weight profiles has been developed and is shown in

Figure 13.

Figure 13: The Superuser Interface

The developed superuser interface has the purpose of giving a tool to the

superusers to set accurate weight profiles based on their application requirements

for the executing users to select. The main feature of this interface is the graphical

representation of all possible weight profiles in an interactive parallel plot [33].

Parallel plots are used to show connections between high-dimensional objectives:

a point of an n-dimensional space is represented by n vertices on n parallel

dimensions which are connected by a polyline. The position of a vertex in any

dimension corresponds to the coordinate of this point in this dimension. Figure 13

shows such a parallel plot with each line representing a weight profile (weights on

monetary cost, execution time, and energy consumption) and its corresponding

cost which is randomized in this example. An example of a weight profile would be

0.8 weight on monetary cost, 0.1 weight on execution time, and 0.1 weight on

energy with its corresponding costs of $40,000, 8100 seconds, and 220000 mAh

25

(milliampere hour). The three different costs are calculated based on the average

cost of a query using this specific weight profile, then multiplied by the expected

number of queries to execute. This data can be received by the system when

evaluating historical data of query execution during the previous time periods.

Assuming one million queries, the corresponding average costs per query are

$0.04, 0.0081s, and 0.22 mAh when using the weight profile in the previous

example.

Furthermore, Figure 14 shows the use of a filter function, constraining the

monetary cost to a limit of $45,000. Selecting a range on an axis reduces all

polylines to those that have a vertex in the defined range. In the given example, the

superuser is able to constrain the resulting costs of a weight profile to narrow

his/her choice on a weight profile for the query executing user.

Figure 14: The Superuser Interface including a constraint selection on
monetary cost

26

 Normalized Weighted Sum Algorithm Based Scheduling Algorithm 3.3

This section will describe, how to incorporate the Normalized Weighted Sum

Model in the scheduling process, previously described in section 2.1. This step is

needed to reduce the complexity of a Pareto-Set scheduler as analyzed in section

3.3.1.

The “Normalized Weighted Sum Algorithm based scheduling algorithm”

(NWSA-S), shown in Figure 15, is a two stage algorithm based on the generic

nested loop scheduling algorithm presented by Kllapi et al. [34].

Algorithm 2: NWSA based scheduling algorithm (NWSA-S)

Input:

WP : The selected weight profile

G: The dataflow graph

CONST: Solution constraints

LIMIT: Container limit sequence generator

Output: bestQEP: the best QEP of G given the other parameters.

1. bestQEP  
2. while LIMIT.hasNext() and STOP.continue() do
3. limit  LIMIT.getNext()
4. nextQEP  SCHEDULER(WP; G; limit; CONST)
5. bestQEP  FILTER(bestQEP, nextQEP)
6. STOP.addFeedback(nextQEP)
7. end while

8. return bestQEP

Figure 15: Algorithm 2: NWSA based scheduling algorithm (NWSA-S)

The input parameters for this Algorithm are the following:

 The weight profile (WP) selected by the query executing user and preset by

the superuser.

27

 The dataflow graph (G) which is the result of the Task Generator (compare

Section 2.1, Figure 3).

 The solution constraints (CONST) as the maximum allowed costs for each

objective. These constraints are used for the normalization process of

NWSA.

 The list of containers (LIMIT), including specifications of each container,

available for operator scheduling.

In addition to the input, the algorithm uses four functions which are defined as

follows:

 LIMIT.getNext returns a set of containers which should be used to schedule

the operators for G in order to determine the QEP using this set of

containers. In case of homogeneous containers, LIMIT.getNext returns an

increasing number of containers with identical specifications.

 SCHEDULER (WP; G; limit; CONST) determines the optimal QEP based on

the given weight profile, the dataflow graph, the set of containers and the

maximum allowed costs for each objective. An NWSA greedy

implementation of this algorithm is given in Figure 16.

 FILTER(bestQEP, nextQEP) determines the optimal QEP based on the score

of bestQEP and nextQEP. The complexity of this filter is 𝑂(1) since it is a

simple comparison of two numbers.

 A boolean routine STOP determining whether or not to stop the

exploration. The STOP routine used in NWSA-S in case of homogeneous

containers is determined by the improvement of a score of a new QEP in

28

regards to the previous best QEP. If the improvement by the new QEP is

below a certain threshold, the algorithm stops the exploration of further

containers.

NWSA-S iterates over the different sets of containers specified in LIMIT and

called by LIMIT.next() (Line 3), calculates a QEP based on the SCHEDULER (Line

4), compares the new QEP with the current best QEP (Line 5), and updates the

STOP routine (Line 6) until there is no new set of containers or the STOP routine

stops any further exploration (Line 2). Since NWSA-S is iterating over limit, the

complexity of this algorithm is defined by the size of limit and the complexity of

the scheduler used in the loop:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑁𝑊𝑆𝐴 − 𝑆  𝑂(𝑛) + 𝑂(𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟), 𝑤𝑖𝑡ℎ 𝑛 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑖𝑚𝑖𝑡

The “Scheduler: NWSA Greedy” (NWSA-S_G), shown in Figure 16, is a

greedy algorithm based on the generic greedy scheduling algorithm presented by

Kllapi [34] which is used as the SCHEDULER function in Algorithm 2 (Figure 15).

29

Algorithm 3: Scheduler: NWSA Greedy

Input:

WP : The selected weight profile

G: The dataflow graph

C: The maximum number of parallel containers to use

CONST: Solution constraints

Output: 𝑆𝐺 : The schedule of G with at most C containers

1. 𝑆𝐺  
2. 𝑠𝑐𝑜𝑟𝑒𝑠𝑜𝑝  NWSA(G, C)

3. ready  {operators in G that have no dependencies}
4. while ready   do
5. n  NEXT(ready, 𝑠𝑐𝑜𝑟𝑒𝑠𝑜𝑝)

6. SG ASSIGN(C , n , WP)

7. ready  ready – {n}
8. ready  ready + {operators in G that dependencies no longer exist}
9. end while
10. return 𝑆𝐺

Figure 16: Algorithm 3: Scheduler: NWSA Greedy

The input parameters for this Algorithm are the following:

 The weight profile (WP) selected by the query executing user and preset by

the superuser.

 The dataflow graph (G) which is the result of the Task Generator (compare

Section 2.1, Figure 3).

 The solution constraints (CONST) as the maximum allowed costs for each

objective. These constraints are used for the normalization process of

NWSA.

 A set of containers (C), including specifications of each container, available

for operator scheduling.

30

In addition to the input, the algorithm uses three functions which are defined as

follows:

 NWSA(G, C) computes the scores for each operator in G for each container

in C. In case of heterogeneous containers, NWSA(G, C) has a complexity of

𝑂(𝑜𝑝 ∗ 𝑐) with op equals the number of operators in G and c equals the

number of containers in C, since a score is computed for every operator on

every container In case of homogeneous containers, the complexity of

NWSA(G, C) decreases to 𝑂(𝑜𝑝) since independent from the number of

containers, the score of one operator will be equal for all containers in C

which leads to one score computation for each operator.

 NEXT(ready, scoresop) selects one operator out of the set of ready

operators. This selection is done by reading the scores of ready operators

on all containers and choosing the operator with the overall lowest score

for any container in C.

 ASSIGN(C, n ,WP): A score for each possible assignment of n to a container

in C is calculated. Afterwards, the operator n will be assigned to the

container with the lowest score for the resulting schedule. The complexity

of ASSIGN is dependent on the number of containers c: 𝑂(𝑐) since a score

for each container assignment is calculated.

NWSA-S_G starts with an empty schedule (Line 1), computes the score for each

operator in G for each container in C (Line 2), and receives all operators without

any dependencies (Line 3). The algorithm then loops over the following sequence

of operations until no operator is ready to be assigned(Line 4): the operator with

31

the overall lowest score for any container in C is selected (Line 5) and is assigned

to the container whose resulting score for the global schedule is the lowest (Line

6). The selected operator is now assigned to a container and part of the global

schedule 𝑆𝐺 . Finally, the list of assignable operators is updated by removing the

assigned operator (Line 7) and adding the operators in G, which’s dependencies no

longer exist (Line 8). After all operators are assigned to their containers, the

resulting schedule 𝑆𝐺 represents the QEP with respect to WP, G, C, and CONST.

3.3.1 Trade-off of NWSA-S_G

NWSA-S_G is a greedy scheduler which will always find the local optimum

[35] when assigning a new operator based on the already assigned operators. The

complexity of a Pareto-Set Scheduler is element of 𝑂(𝑐𝑜𝑝) with op equals the

number of operators in G and c equals the number of containers in C. This is based

on the fact that each possible combination of assigning operators to containers

represents one QEP. Calculating all those QEPs is not computable in a reasonable

amount time since, for example, a schedule of 50 operators and 10 containers

would have 1050 possible QEPs and would need 1050computations. NWSA-S_G has

a comparably low complexity with 𝑂(𝑜𝑝 ∗ 𝑐) since operators are iteratively

assigned and assume a fixed assignment of previously assigned operators. Given

the previous example of 50 operators and 10 containers, there are 10 alternatives

of assignments for each operator, resulting in 500 possible QEPs Nevertheless,

since the execution time of a schedule 𝑆𝐺 , defined as the maximum execution time

of all containers in C (max𝑐 ∈ 𝐶 𝑡𝑖𝑚𝑒(𝑐)), is a non-linear function, the resulting QEP

is not guaranteed the global optimum [35] for its cost with respect to WP, G, C, and

32

CONST. Figure 17 shows an example where NWSA-S_G is not able to find the global

optimum schedule.

33

WP: Weight_Time: 0.7 ; Weight_Money: 0.3

G: {op1, op2, op3; all independent}

C: {c1, c2}

Scores-Table of G x C

<normalized_cost_Time,

normalized_cost_Money>

c1 c1_Score c2 c2_Score

op1 <5,5> 5 <3,9> 4.8

op2 <3,2> 2.7 <2,7> 3.5

op3 <9,10> 9.3 <6,12> 7.8

Schedule 1: c1 = {op2} , c2 = {op1, op3}

 Total time: max{3, 3+6} = 9 Total money: 2+9+12 = 23

Schedule 2: c1 = {op1, op2}, c2 = {op3}

 Total time: max{5+3, 6} = 8 Total money: 5+2+12 = 19

Figure 17: Trade-off example NWSA-S_G

Following NWSA-S_G, the algorithm first assigns op2 (the operator with the

lowest overall score) to c1 (the container with the lowest schedule score), followed

by assigning op1 (the operator with the lowest remaining score) to c2 (the

container with lowest schedule score), and assigning op3 to c2 (the container with

the lowest schedule score). This schedule 1 results in a total time of 9 and a

monetary cost of 23. Comparing it to the schedule 2 with c1 = {op1, op2} and c2 =

{op3}, the total time of 8 and monetary cost of 19 dominates schedule 1. This

34

schedule 2 is not found by NWSA-S_G because the assignment for op1 to c1 is not

the local optimum assignment but takes into consideration the assignment of op3

to reach the global optimum of the schedule. This problem is tied to the greedy

structure of this algorithm since a greedy algorithm always optimizes toward the

local optimum.

 Proposed Architecture 3.4

Based on the proposed solutions in Sections 3.1, 3.2, and 3.3, the architecture

of the Mobile-Cloud Database Environment changes to incorporate the different

types of users as well as to incorporate the weight profiles needed for the

scheduler. The resulting Mobile-Cloud Database Architecture is shown in Figure

18.

35

Figure 18: Proposed Mobile-Cloud Database Architecture

 As described in Section 3.2, the weight profiles are preset by superusers

before a query executing user starts to issue a query. Because of their centralized

management, the weight profiles are stored at the data owner and fetched to every

mobile device client upon request.

 Compared to the previous architecture in Section 1.1.2, Figure 2, an issue of

a query not only requires the definition of a query, but it now also requires the

selection of a preset weight profile (Step 1). The weight profile is carried along

Steps 2 – 4, which do not change from the previous architecture. Step 5 internally

changes from using the lexicographical ordering to using the proposed scheduling

algorithm NWSA-S, described in Section 3.3.

36

Chapter 4: Evaluation and Results

This chapter presents the conducted experiments and their corresponding

results to evaluate the performance of the proposed model, NWSA. In three

experiments, NWSA is compared with the single-objective optimization strategy of

lexicographical ordering (Section 4.1), compared with the user interaction model

of the multi-objective optimization strategy of Pareto-Set / Skyline Query (Section

4.2), and compared with the Pareto-Set based scheduling algorithm by Kllapi [34].

It is the overall goal of the conducted experiments to show the increased

quality of results in regards to single-objective optimization strategies without an

additional overhead in computation time. Furthermore, it is the goal of the

conducted experiments to show an improved user interaction in terms of user

response time and decision accuracy in regards to multi-objective optimization

strategies without a loss of quality in terms of the results and without a generated

computational overhead.

 Normalized Weighted Sum Algorithm 4.1

4.1.1 Simulation Model

In the described mobile-cloud database environment, each QEP consists of

three costs: monetary cost for using the cloud provider, query execution time as

time to run a query plan, and energy consumption on the mobile device. The last

cost becomes important under the condition of using a cache on the mobile device

to have the option of receiving partial or total requested data from the mobile

device itself [7]. This obviously results in a lower monetary cost since the cloud

37

provider is less or not used, but also results in a higher amount of consumed

energy since processing the cache consumes more energy than waiting for data to

be retrieved from the cloud database. A full review of such a system is given in [5].

The simulation to test the impact of NWSA in regards to single-objective

optimization is built as follows: the simulation consists of one million experiments,

where the proposed NWSA as well as the lexicographical ordering strategy have to

choose a single QEP out of a set of 20 QEPs. The cost of each QEP is generated

randomly within the following ranges: Monetary Cost (M) has a range of 0 up to 10

cents and was chosen according to the current Amazon EC2 pricing models [2]; the

range for query execution time was selected to be between 0 and 10 seconds

(including data transfer time), and energy between 0 and 0.5 mAh. This simulation

is repeated for multiple weight compositions.

4.1.2 Simulation Results

In comparison to the lexicographical ordering strategy the experimental

results show two facts. First, the NWSA computes the same results under the same

costs as the lexicographical ordering when focusing on only one objective. Second,

NWSA produces negligible overhead in computing this selection. As it was already

discussed in the previous sections, 2.2.1 and 3.1, both algorithms are running

linear execution time related to the size of QEPs to choose from. That leads to a

total algorithm execution time of less than one millisecond per experiment for both

algorithms so that the difference is negligible. Concluding this comparison,

negligible overhead is incurred and no higher cost alternatives results are selected.

38

Looking at the performance of NWSA, this evaluation shows the increased

possibilities of this strategy to select QEPs with their trade-offs.

Figure 19: Impact of Monetary Cost Weight on Total Monetary Cost of QEPs
selected by NWSA

Figure 20: Impact of Monetary Cost Weight on Total Execution Time of QEPs
selected by NWSA

0

10000

20000

30000

40000

50000

60000

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9 1

MC
in $

Weight on Monetary Cost

Impact of Monetary Cost Weight on
Total Monetary Cost (MC)

8000
8500
9000
9500

10000
10500
11000
11500
12000

0 0,10,20,30,40,50,60,70,80,9 1

QET
in sec

Weight on Monetary Cost

Impact of Monetary Cost Weight on
Query Execution Time (QET)

39

Figure 21: Impact of Monetary Cost Weight on Total Consumed Energy of
QEPs selected by NWSA

The different options on how to stress the weights on the different

objectives can change the total cost in terms of monetary cost, execution time and

energy consumption by a large margin as it can be seen in Figure 19, Figure 20,

and Figure 21. The figures show the changes of the total cost of the one million

chosen QEPs as the weight on monetary cost increases. The remaining weight is

divided equally between execution time and energy consumption.

It can be seen that when the monetary cost weight increases, the monetary

costs decreases, while the query execution time and energy consumption increase.

It is notable that the minimum and maximum values of an objective span a large

gap, so the impact of having weights is easily seen. Having a small weight on one

objective can lead to a big difference in the total cost.

 It is notable that a consistent change in weights does not lead to an even

distribution of points in the Pareto-Set. This well-known problem is analyzed by

Das and Dennis [36].

210000
215000
220000
225000
230000
235000
240000
245000
250000

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9 1

E
in mAh

Weight on Monetary Cost

Impact of Monetary Cost Weight on
Total Consumed Energy (E)

40

 User Study on Optimization Strategies 4.2

This section describes an evaluation of the difference between the user

decision on a single QEP in the Skyline/Pareto Set model and the weight profile

selection process needed by the NWSA. The goal of this user study is to compare

the three approaches, the Skyline Query selection, the weight selection process in

NWSA, and the preset weight profile selection of NWSA, in terms of the accuracy of

the decision that a user makes and the amount of time the user needs to make such

a decision.

4.2.1 Simulation Model

The participants of this user study, volunteers with and without a

background in computer science, were given three sets of questions representing

the decision a user has to make in the Skyline approach by selecting an alternative

based on the given Pareto-Set (an example can be seen in Figure 22), the decision a

user has to make in the NWSA approach by selecting weights to stress the different

objectives (an example can be seen in Figure 23), and the decision based on the

preset weight profiles including a logical description (an example can be seen in

Figure 24). The sets appeared in alternating order for different participants of the

study to remove any bias towards any of the three approaches because of the

order of the sets.

This study has been transposed to an easy equivalent multi-objective

question so that no specific knowledge or large introduction to the field was

needed. In each question, users are asked to select one alternative to buy a TV

based on the given alternatives. In this transposition, a TV is equivalent to a QEP,

41

the monetary cost to purchase a TV is equivalent to the monetary execution cost,

the delivery time is equivalent to the execution time, and the vendor reputation is

equivalent to the energy consumption. With each question in a set, users are

presented with 3, 5, 7, and 9 alternatives to choose from.

Figure 22: User Study Set 1 representing the Skyline approach

42

Figure 23: User Study Set 2 representing the NWSA approach with weight
profiles

Figure 24: User Study Set 3 representing the NWSA approach with logical
descriptions

43

4.2.2 Simulation Results

The preliminary results of the user study show that the preset weight

profile selection of NWSA given a logical description of a weight profile is by far the

easiest decision in terms of both the time a user takes to make a decision and the

accuracy of the decision. The participants in the study answered those decision

questions in average nearly twice as fast (~42 seconds) as the decision with a

given weight profile without logical description (~80 seconds). The participants

needed similar time for selecting one solution out of the list of alternatives in the

Skyline approach (~85 seconds). The accuracy of selecting the optimal answer was

low for both the Skyline approach as well as the weight profile selection without

logical description (both < 50%). In contrast to that, the participants selected the

optimal alternative with accuracy greater than 80% given the logical descriptions

from the study set 3. Furthermore, giving a participant more than five alternatives

to choose from in the Skyline approach or in the NWSA approach without a logical

description of weight profiles increases the time needed to make a decision

significantly (increase of ~40%). Given a logical description of the weight profile in

the NWSA approach reduced this increase to only 10% more time to answer a

question of 7 or 9 alternatives compared to 5 given alternatives.

 Performance study on the NWSA based scheduling algorithm 4.3

This section describes a performance study of the difference between the

scheduling algorithm by Kllapi [34] (further referenced as Kllapi) and the

proposed NWSA based scheduling algorithm (Section 3.3). There are two goals for

this performance study. The first goal is to show that there is no loss in quality of

44

the computed QEPs by using NWSA. The second goal is to show that there is no

generated overhead by using NWSA. We used HIVE [37] as the underlying

database system for all experiments. Furthermore, we reduced the cost-

dimensions of a QEP to monetary cost and execution time since the experiment

was conducted on the cloud without mobile interaction and therefore without

energy consumption on a mobile device. This reduction has no impact on the

scheduler itself.

4.3.1 Simulation Model: Quality of the QEPs

For this simulation model, we use the database schema and queries of the

TPC-H benchmark [38]. We generated a data size of 2GB for the database using the

given TPC-H dbgen. The simulation model was set for 20 containers, using two of

each container-type specified in Figure 25.

Container-Type Speed (in bytes/sec) monetary cost (in $/sec)
1 3162277.5 1.0E-7
2 1.0 E14 1.0E-6
3 1.4 E14 1.9E-6
4 1.7 E14 2.8E-6
5 1.9 E14 3.7E-6
6 2.1 E14 4.6E-6
7 2.4 E13 5.5E-6
8 2.5 E13 5.5E-6
9 2.7 E13 7.3E-6
10 2.9 E13 8.2E-6

Figure 25: Container Specification

We executed multiple instances for each of the 22 TPC-H queries, generated

by TPC-H’s qgen, and compared the resulting QEPs of Kllapi to the resulting QEPs

of NWSA. Since each instance of NWSA with a given weight profile results in a

single QEP, we combined QEPs over different weight profiles defined as <x, 1-x>

45

for <weight_Time, weight_Money> with an increasing x of 0.05 to receive a curve of

the computed QEPs.

It is the goal of this simulation to show that the QEPs generated by Kllapi

and generated by NWSA are equal.

4.3.2 Simulation Model: Computation time of the schedulers Kllapi [34] and NWSA

It is the goal of this simulation to show that the NWSA scheduler does not

generate a significant overhead compared to the Kllapi scheduler.

For this simulation model, we use the database schema and queries of the

TPC-H benchmark [38]. This simulation has the purpose of exploring the effects of

the parameters on the execution time of Kllapi and NWSA. To first show the

differences of both schedulers under the average conditions (average database size

and average number of containers), we show an extensive simulation of

randomized types of the TPC-H queries. 2GB was selected as the average size of the

database since the size of the database does not have a significant influence on the

schedulers’ execution time (later proven in Section 4.3.4). Furthermore, a

container limit of 20 containers was used since this was the maximum achieved

parallelism without restricting the number of containers. Since both schedulers are

dependent on the number of operators and containers, we modified the number of

containers (from 4-100) and the underlying size of the database (2-10GB) for a

second and third experiment..

46

4.3.3 Simulation Results: Quality of the QEPs

Figure 26 and Figure 27 show the generated QEPs when using the NWSA

scheduler and the Kllapi scheduler, respectively, on the TPC-H Query 1(Q1). It can

be observed that the generated QEPs using NWSA are the elements of the

generated QEPS using Kllapi. Furthermore, it can be observed that Kllapi

generated 3 additional QEPs. This is the result of increasing the weight profile <x,

1-x> in steps of 0.05. Since the missing QEPs are close to the other generated QEPs,

the size of the steps is too large to catch these. Decreasing the size of the steps

would generate the remaining QEPs. The experiments for the TPC-H Queries 2-22

(Q2-Q22) show identical results.

 The experiment shows that NWSA does not compute QEPs with a loss of

quality in regards to the computed QEPs by Kllapi. There is no loss of QEPs and

furthermore no QEPs in NWSA that are dominated by QEPs in Kllapi.

Figure 26: Generated QEPs for TPC-H (Q1) by NWSA Scheduler

0,00E+00

2,00E-06

4,00E-06

6,00E-06

8,00E-06

1,00E-05

1,20E-05

1,40E-05

1,60E-05

1,80E-05

0,0 5,0 10,0 15,0 20,0

m
o

n
e

ta
ry

 c
o

st
 (

in
 $

)

execution time (in ms)

QEPs by NWSA

47

Figure 27: Generated QEPs for TPC-H (Q1) by Kllapi Scheduler

4.3.4 Simulation Results: Computation time of the schedulers Kllapi [34] and NWSA

Figure 28 and Figure 29 show the average execution time of Kllapi and

NWSA, respectively, when executing a batch of 500 instances of type randomized

TPC-H queries. It can be observed that the NWSA scheduler needs in average about

200 ms more to process a batch of 500 queries with heterogeneous containers and

about 350 ms more to process a batch of 500 queries with homogeneous

containers. This difference is explainable by the needed computation of a score for

each operator within NWSA. Since the additional overhead per single query is in

average less than one millisecond, we can consider this overhead negligible.

0

0,000002

0,000004

0,000006

0,000008

0,00001

0,000012

0,000014

0,000016

0,000018

0,0 5,0 10,0 15,0 20,0

m
o

n
e

ta
ry

 c
o

st
 (

in
 $

)

execution time (in ms)

QEPs by Kllapi

48

Batch(500 queries) Kllapi (in ms) NWSA (in ms)

Batch 1 1476 1753

Batch 2 1705 1935

Batch 3 1442 1789

Batch 4 1567 1631

Batch 5 1581 1896

Batch 6 1480 1671

Batch 7 1552 1646

Batch 8 1489 1529

Batch 9 1569 1870

Batch 10 1422 1619

Batch 11 1523 1797

Batch 12 1436 1708

Batch 13 1502 1734

Batch 14 1398 1772

Batch 15 1600 1839

Batch 16 1344 1587

Batch 17 1372 1522

Batch 18 1569 1656

Batch 19 1544 1569

Batch 20 1383 1562

Average per batch 1498 1704

Average per query 2.9954 3.4086

Figure 28: Average execution time of the Kllapi and NWSA Scheduling
algorithms on Heterogeneous Containers

49

Batch(500 queries) Kllapi (in ms) NWSA (in ms)

Batch 1 1063 1395

Batch 2 1068 1416

Batch 3 958 1348

Batch 4 988 1338

Batch 5 1183 1530

Batch 6 1090 1466

Batch 7 1077 1495

Batch 8 969 1334

Batch 9 910 1264

Batch 10 1028 1424

Batch 11 1089 1402

Batch 12 987 1312

Batch 13 991 1387

Batch 14 934 1256

Batch 15 977 1278

Batch 16 937 1238

Batch 17 944 1213

Batch 18 1058 1440

Batch 19 955 1311

Batch 20 950 1305

Average per batch 1008 1357

Average per query 2.016 2.715

Figure 29: Average execution time of the Kllapi and NWSA Scheduling
algorithms on Homogeneous Containers

Figure 30 and Figure 31 show execution times of Kllapi and NWSA when

executing a batch of 500 instances of type randomized TPC-H queries with

increasing number of containers. Since the additional overhead per query is in

average less than one millisecond, we can consider this overhead negligible.

Furthermore, given the TPC-H queries, the resulting QEPs only achieve a maximum

parallelism of up to 20 containers. Up to 20 containers, the additional overhead

per query is barely measurable.

50

Figure 30: Influence of the number of heterogeneous containers on the
execution time of the Kllapi and NSWA Scheduling algorithms

Figure 31: Influence of the number of homogeneous containers on the
execution time of the Kllapi and NWSA Scheduling algorithms

Last, we studied the effects of increasing the size of the database on the

schedulers’ execution time. As represented in Figure 32, the size of the database

0

10000

20000

30000

40000

50000

60000

4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0

0

e
x

e
cu

ti
n

 t
im

e
 p

e
r

b
a

tc
h

 (
in

 m
s)

of containers

Kllapi* NWSA

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100 120

e
x

e
cu

ti
n

 t
im

e
 p

e
r

b
a

tc
h

 (
in

 m
s)

of containers

Kllapi* NWSA

51

does not seem to have a relevant effect on the generated overhead. The averaged

overhead per query is less than one millisecond and is therefore negligible.

Figure 32: Influence of the database size on the execution time of the Kllapi
and NWSA Scheduling algorithms

All conducted experiments show negligible overhead generated by the

NWSA scheduler in regards to the Kllapi scheduler [34].

 Summary of Experiment Results 4.4

The first overall goal of the conducted experiments was to show the

increased quality of QEP results produced by the proposed model, NWSA,

compared to the single-objective optimization strategies without an additional

overhead in computation time. This hypothesis is confirmed by the results of the

experiments reported in Section 4.1.

Furthermore, it was the goal of the conducted experiments to show an

improved user interaction in terms of user response time and decision accuracy

compared to the multi-objective optimization strategies without a loss of quality in

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10e
x

e
cu

ti
o

n
 t

im
e

 p
e

r
b

a
tc

h
 (

in
 m

s)

Data size (in GB)

NWSA Kllapi*

52

terms of the results and without a generated computational overhead. The results

of the first part are shown in the experiments reported in Section 4.2, where the

user case study shows an improved accuracy and response time of a user when

selecting the logical descriptions of the weight profiles over the weight profiles or

the query execution plans. The second part was shown in the experiments

reported in Section 4.3, where the proposed scheduling NWSA algorithm (NWSA-

S) was compared with the multi-objective optimization scheduling algorithm by

Kllapi [34]. NWSA-S does not generate a significant overhead and has no loss in

quality of the computed QEPs.

53

Chapter 5: Conclusion and Future Work

This thesis presents a multi-objective optimization (MOO) strategy, named

Normalized Weighted Sum Algorithm (NWSA). It is its goal to solve the multi-

objective optimization problem with the use of user preferences on optimization

objectives (weight profile). The experiments evaluating NWSA in the context of a

mobile-cloud query optimization have been presented. NWSA is able to select the

query execution plan that is an element of the Pareto set, while avoiding the

expensive cost of computing the Pareto set. NWSA is highly adaptable to any multi-

objective decision problem since it is not limited to any number of objectives as

pointed out in section 3.1. The experimental results show that NWSA incurs

negligible computational overhead in comparison to the existing lexicographical

ordering strategy.

Furthermore, this thesis presents a new user interaction model for NWSA

and MOO strategies, introducing the user-types of query executing users and

superusers. With superusers, who are aware of query execution constraints,

presetting weight profiles, query executing users can select these weight profiles

and are not burdened with the decision on a query execution plan (QEP). These

QEPs are generated in the process of multi-objective query optimizations (MOQO)

in terms of monetary cost, execution time, and energy consumption of a query.

This model was compared with the existing user-interaction of the Skyline/Pareto

Set approach within a user study. The comparison shows that the user interaction

of deciding on a Pareto optimal QEP, which is necessary while using the Skyline

approach, can be eliminated by using NWSA. The user study shows that using a

54

logical description of a weight profile substantially increases the accuracy of a

query executing user selecting the optimal alternative and also speeds up the time

a user needs to select his/her answer. These weight profiles can be preset by a

superuser, calculated based on possible constraints. This process can be done

using the superuser interface we have developed and presented in this thesis.

Finally, this thesis presents a scheduler for query processing based on

NWSA (called NWSA-S). With the implementation of NWSA-S, query processing

utilizes the previously explained improvements in user interactions with MOQO.

Experiments, in which NWSA-S is compared to a multi-objective Pareto-Set based

scheduler by Kllapi [34] show no significant generated overhead in execution time

of the scheduler and also shows no loss in quality of the computed QEPs, leaving

the improved user interaction as benefit without additional cost.

 Future Work 5.1

As shown in Section 3.3.1, the developed greedy-based scheduler NWSA-S

has a significant trade-off between computational complexity and finding the

global optimum. Evolutionary algorithms [10] or heuristics [18] can potentially

improve the quality of this algorithm. These strategies are able to search for the

global optimum which would increase the quality of the selected QEP.

Another future work is the integration of NWSA in a cache replacement

policy to extend semantic caching [7]. Based on the computed score of a QEP, the

new policy can help to keep more valuable data in the semantic cache [39]. The

higher the score of data in the cache, the higher the cost to regain those results will

55

be (the recovery cost value). This could replace the often used metrics of

minimizing cache misses.

Finally, the existing mobile prototype for query executing users needs to be

assembled with the query processing prototype on the cloud site. The interfaces of

the query processing prototype for entering queries and the mobile prototype for

executing a query are highly adaptable, based on the fact that the interfaces of both

components match each other. This process also enables simulations to include

energy consumption as an objective for the scheduler.

56

References

[1] P. Mell and T. Grance, "The NIST definition of cloud computing," 2011.

[2] Amazon, "Amazon Web Service prices - EC2 - On Demand Pricing," 2016.

[Online]. Available: https://aws.amazon.com/ec2/pricing/on-

demand/?nc1=h_ls. [Accessed 01 08 2016].

[3] N. Fernando, S. W. Loke and W. Rahayu, "Mobile cloud computing: A survey,"

in Future Generation Computer Systems, 2013.

[4] H. T. Dinh, C. Lee, D. Niyato and P. Wang, "A survey of mobile cloud

computing: architecture, applications, and approaches," in Wireless

communications and mobile computing 13.18, 2013.

[5] J. Mullen, M. Perrin, F. Helff, L. Gruenwald and L. d'Orazio, "A Vision of Time-,

Energy-, and Monetary Cost-Aware Query Processing in Mobile Cloud

Database Environment," March 2015.

[6] Microsoft, "Microsoft Azure Pricing," [Online]. Available:

https://azure.microsoft.com/en-us/pricing/details/cloud-services/.

[Accessed 20 11 2016].

[7] M. Perrin, "Time-, Energy-, and Monetary Cost-Aware Cache Design for a

Mobile Cloud Database System," May 2015.

[8] H. Garcia-Molina, J. D. Ullman and J. Widom, Database Systems, The Complete

Book, 2002.

57

[9] A. Ben-Tal, Characterization of Pareto and lexicographic optimal solutions,

Springer Berlin Heidelberg, 1980.

[10] E. Zitzler and L. Thiele, "Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach," in IEEE

Transactions On Evolutionary Computation, 1999.

[11] C. H. Papadimitriou and M. Yannakakis, "Multiobjective Query Optimization,"

in Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, 2001.

[12] J. Chomicki, P. Ciaccia and N. Meneghetti, "Skyline queries, front and back," in

ACM SIGMOD Record 42.3, 2013.

[13] D. Kossmann, F. Ramsak and S. Rost, "Shooting stars in the sky: An online

algorithm for skyline queries," in Proceedings of the 28th international

conference on Very Large Data Bases (VLDB), 2002.

[14] D. Papadias, Y. Tao, G. Fu and B. Seeger, "An optimal and progressive

algorithm for skyline queries," in Proceedings of the 2003 ACM SIGMOD

international conference on Management of data (ACM), 2003.

[15] J. Lee, G.-w. You, S.-w. Hwang, J. Selke and W.-T. Balke, "Interactive skyline

queries," in Information Sciences, 2012.

[16] S. Borzsony, D. Kossmann and K. Stocker, "The skyline operator," in 17th

International Conference on Data Engineering, 2001.

[17] C. Lei, Z. Zhuang, E. A. Rundensteiner and M. Eltabakh, "Shared Execution of

Recurring Workloads in MapReduce∗," in Proceedings of the VLDB

58

Endowment, 2015.

[18] I. Trummer and C. Koch, "A Fast Randomized Algorithm for Multi-Objective

Query Optimization," in SIGMOD, 2016.

[19] I. Trummer and C. Koch, "Multi-Objective Parametric Query Optimization," in

Proceedings of the VLDB Endowment, 2014.

[20] Y. Tao, X. Xiao and J. Pei, "Efficient Skyline and Top-k Retrieval in Subspaces,"

in IEEE Transactions on Knowledge and Data Engineering, 2007.

[21] J. L. Bentley, H. T. Kung, M. Schkolnick and C. D. Thompson, "On the average

number of maxima in a set of vectors and applications," in Journal of the ACM

(JACM), 1978.

[22] D. V. Lindley, Scoring Rules and the Inevitability of Probability, 50 ed.,

International Statistical Review Vol 50, 1982, pp. 1-11.

[23] F. Helff, L. Gruenwald and L. d'Orazio, "Weighted Sum Model for Multi-

Objective Query Optimization for Mobile-Cloud Database Environments," in

Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference

EDBT/ICDT 2016, Bordeaux, France, 2016.

[24] E. Triantaphyllou, Multi-criteria decision making methods: a comparative

study, 44 ed., Springer Science & Business Media, 2013.

[25] I. Kim and O. de Weck, "Adaptive weighted-sum method for bi-objective

optimization: Pareto front generation," in Structural and multidisciplinary

optimization 29.2 , 2005, pp. 149-158.

59

[26] R. T. Marler and J. S. Arora, "The weighted sum method for multi-objective

optimization: new insights," in Structural and multidisciplinary optimization,

2010.

[27] T. Shibata and T. Ohmi, "A functional MOS transistor featuring gate-level

weighted sum and threshold operations," in IEEE Transactions on Electron

devices, 1992.

[28] M. G. M. Hunink und M. C. Weinstein, Decision Making in Health and Medicine:

Integrating Evidence and Values, 2nd Hrsg., Cambridge University Press,

2014.

[29] P. Kind, J. E. Lafata, K. Matuszewsk and D. Raisch, "The use of QALYs in clinical

and patient decision-making: Issues and prospects," in Value In Health, 2009.

[30] P. C. Fishburn, "Methods of estimating additive utilities," in Management

science 13.7, 1967.

[31] C.-H. Goh, Y.-C. A. Tung and C.-H. Cheng, " A revised weighted sum decision

model for robot selection," in Computers & Industrial Engineering Vol.30(2),

1996.

[32] L. Zadeh, "Optimality and non-scalar-valued performance criteria," in IEEE

transactions on Automatic Control, 1963.

[33] A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and Its

Applications, Springer, 2009.

[34] H. Kllapi, E. Sitaridi and M. M. Tsangaris, "Schedule Optimization for Data

Processing Flows on the Cloud," in Proceedings of the 2011 ACM SIGMOD

60

International Conference on Management of data (ACM), 2011.

[35] P. E. Black, Dictionary of algorithms and data structures, National Institute of

Standards and Technology, 2004.

[36] I. Das and J. E. Dennis, "A closer look at drawbacks of minimizing weighted

sums of objectives for Pareto set generation in multicriteria optimization

problems," in Structural optimization, 1997.

[37] "Apache HIVE," [Online]. Available: http://hive.apache.org/. [Accessed 20 11

2016].

[38] Transaction Processing Performance Council (TPC), "TPC BENCHMARK H:

Revision 2.17.1," 2014.

[39] J. Jeong and M. Dubois, "Cost-sensitive cache replacement algorithms," in

High-Performance Computer Architecture, 2003.

