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ABSTRACT 
Growing demand for more mobile access to data is only matched 

by the growth of large and complex data. The availability and 

scalability of cloud resources when combined with techniques of 

caching and distributed computation provide tools to address 

these problems, but bring up new multi-dimensional optimization 

challenges such as execution time, monetary cost, and power 

consumption. The plethora of various cloud providers with 

varying pricing schemes only further complicates the user’s 

problem. To address these issues we present a three-tier model 

that formalizes the query planning and execution between mobile 

users, data owners and cloud providers, allowing state holders to 

impose constraints on time, money and energy consumption and 

understand the possible tradeoffs between them. 

1. INTRODUCTION 
Mobility, while not a new concept, has increasingly been the 

focus of both academic and industry research. The allure of 

mobile computing is that it provides the users access to 

computational resources independent of their location. While the 

applications and possibilities of ubiquitous access to computing 

resources without having to be tethered to a desk are still being 

explored, the limitations are fairly well known and force us to 

reexamine problems long considered solved in the non-mobile 

case. For example, mobile devices commonly face issues of 

constrained resources such as energy, processing power, storage 

capacity, available memory, network communication and limited 

display and input methods. The disproportionate capabilities of 

mobile devices, when compared2to traditional servers, are quite 

stark; the divide becomes even more apparent when one 

considers the capabilities of clustered cloud resources. To 

address this disparity between capabilities, we have largely fallen 

back onto the client-server model, where the mobile device acts 

as a client traveling with the user querying the more capable 

cloud servers for complex and intensive needs.  

While the simple client-server model is well understood it does 

not fully address the advantages such as elasticity, or the 

challenges such as two-dimensional optimization with respect to 

time and money, heterogeneous pricing models, or heterogeneous 
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capabilities. These challenges often make it hard for users of 

cloud services to understand the cost associated with query, or 

the possible tradeoff between cost and performance.  

For example, consider a doctor who wants to retrieve all the 

patient information on his/her mobile device. The patient data is 

spread among several databases, some of which may reside on 

the data-owners hardware (database servers owned by the 

organization providing the service), while others could be spread 

across various cloud providers. Furthermore, the compilation of 

this data can be computation and data intensive. The problem is 

further complicated by the fact that in addition to considering the 

constraints of client and server resources, one must also consider 

the elastic capabilities and pricing of cloud services.  

The goal of this paper is to provide our vision for designing a 

system that not only effectively utilizes the unique capabilities of 

mobile and cloud resources by allowing for one to easily take 

advantage of the elastic nature of the cloud in order to retrieve 

data, but also to respect the constraints of time, energy on the 

mobile device and monetary cost to use the different cloud 

services.  

The rest of the paper is organized into the following sections. In 

Section 2, we present our proposed three-tier architecture. In 

Sections 3 and 4, we discuss our ideas and associated research 

challenges on caching and query cost estimation strategies on the 

mobile devices and query cost optimization strategies on clouds 

to reduce the amount of time, energy and money necessary for a 

given query. Finally in Section 5, we provide our conclusions. 

2. CLIENT-SERVER-CLOUD 

ARCHITECTURE3 
To address the problems of elastic execution, cost estimation, 

data locality common in interactions that involve mobile users 

querying data owners who utilize cloud service providers, we 

propose a three-tier architecture as described in Figure 1 - 

Proposed Architecture. The first tier, or mobile devices, 

represents the end user where queries are posed and results are 

expected. While mobility is not inherently part of our 

architecture, the assumption is that end user devices will be 

resource constrained (energy, processing power and bandwidth). 

The second tier, or data owner, represents statically available 

non-elastic resources controlled by the owner of the data on 

which the query is being posed. Lastly, the third tier is the cloud 
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services tier comprised of elastic cloud resources, to which the 

data owner has access.  

For illustration, here we use a hospital application as an example 

of the three-tier architecture. Imagine a hospital director needing 

to look up doctor and project information using a tablet in a 

meeting; this would be the mobile tier. The hospital likely has 

some existing server infrastructure with physical limitations. 

These resources are not elastic; adding more server capacity 

would require both upfront capital for a new server in addition to 

any assembly, shipping and configuration lead time. These static 

hospital resources would be the data owner tier. To address burst 

computation needs, the hospital utilizes various IaaS, PaaS and 

SaaS [1] as dictated by their demands. Unlike the constrained 

data owner resources, these cloud resources are elastic in nature, 

meaning they can easily be scaled up, or down as required. 

Usually this will involve some sort of pricing scheme based on 

the resources utilized; this is the cloud resources tier. 

On the mobile device, a well-known technique used to reduce the 

number of interactions with a server is called semantic caching 

[2]. Semantic caching involves not only storing the results from 

previous queries, but also maintaining the metadata associated 

with each query. With this metadata, further server 

communication is either eliminated when the result of a query is 

stored entirely in cache, or reduced when the cache contains only 

a part of the data required by the query. To determine this, the 

technique of query trimming like the one described in [3] is used 

to compare the input query with the query contained in each 

metadata entry. In the case when the cache partially contains the 

query result, a probe query will be created to retrieve the existing 

data from the mobile cache, and a remainder query will be 

created to retrieve the data not contained in the mobile cache. 

The remainder query will be sent to the data owner for execution. 

This query interaction, be it a full query, a remainder query, or a 

prefetched query, between the mobile device and the data owner 

constitutes the primary interaction between the two macro 

components of our solution. The mobile component is 

responsible for maintaining a local cache and deciding what 

query to evaluate. The data-owner and cloud component, in 

addition to providing execution estimation to the mobile 

component for use in query planning, is also responsible for 

evaluating the mobile query while efficiently utilizing the 

available cloud resources. Just as the mobile component must 

consider optimizing for both time and energy, the cloud 

component must consider optimizing for time and budget. With 

this comes the concept of elasticity. Elasticity defines the effect 

that additional resources or money has on the completion time of 

a query. For example, it may be preferable to focus budget 

resources on executing a highly elastic query where 50% increase 

in budget decreases execution time by 200%, rather than a 

weekly elastic query where decreasing the budget by 50% only 

decreases completion time by 10%. 

While many works have studied cloud data management and 

query execution, the scope of investigation is usually limited in 

the sense that only execution time is optimized [4]; or compute 

resources or cloud-pricing models are considered homogeneous 

[5]. By extending the previous works on these disjoint problems 

we present a single solution that considers time and budget across 

heterogeneous clouds, with heterogeneous pricing models, 

allowing both mobile user and data-owner to access their data 

while providing fine grain control of execution time and cost.  

3. MOBILE CACHE AND ESTIMATION 
Introducing semantic caching makes it mandatory to find a trade-

off between running the query on the cloud and running the 

query on the mobile with respect to efficiency, money and energy 

consumption. In particular, it is necessary to estimate the 

amounts of time and energy to be spent to retrieve data on the 

mobile device and to compare them with the time and energy to 

retrieve data on the cloud. In some cases, these amounts of time 

and energy consumed can be bigger than those incurred for 

processing the whole query on the cloud [6]. Therefore, it is 

important to estimate the costs in terms of time, energy and 

money for each query. 

We envision that there are two cache structures on a mobile 

device: query cache and estimation cache.  The query cache may 

be based on semantic caching which can be implemented using 

the definitions, structures and algorithms given in existing works, 

such as [2], [3], [7], [8], [9], [10]. With this, an input query may 

be answered using some available cache entries and therefore, 

only the missing data will be requested from the cloud. For 

example, if the input query has the predicate “Patient.Age < 28” 

and one entry in the query cache corresponds to the predicate 

“Patient.Age < 29”, where Patient is a relation in the database 

and Age is an attribute in this relation, then it is possible to 

answer the input query thanks to the content of the query cache. 

In a semantic cache, each entry contains the information items on 

Figure 1 - Proposed Architecture 
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the corresponding queries (relation, attributes, time stamp, 

predicates, etc.) and a semantic region where the result tuples are 

stored. 

For each cache entry, it is necessary to check that the relation and 

the attributes of the segment in the query cache are the same as 

those of the given query. Also, the query predicates has to be 

analyzed in order to know if the query cache content answers the 

input query completely, partially, or not at all. Once we know 

which entries can be used to answer the query on the mobile 

device, we need to process each semantic region to retrieve the 

wanted tuples. The time and energy to retrieve those data depend 

on the structure used to store the tuples in each region. However, 

if the query is processed on the mobile device, no money is paid 

to the cloud provider to retrieve the data. Consequently, it is 

important to ask the cloud to provide an estimation of how much 

time and money it will take to process the query on its resources. 

With this estimation, the mobile device will then estimate the 

energy it will consume to process the query on those cloud 

services. 

Since computing this estimation requires time, energy and 

money, the mobile device can be equipped with an estimation 

cache to reduce such overheads. Each estimation cache entry 

should contain the time to process the query in seconds, the 

energy to process the query in Joules, and the money cost to 

process the query in dollars. Once we have analyzed the mobile 

device’s cache and we have asked the cloud to provide the cost of 

processing such a query on its services, two estimations are 

available: one to run the query on the mobile device, and one to 

run the query on the cloud. Those estimations are then used to 

check whether or not the given constraints on remaining battery 

life, money and time can be met. Following this result, the query 

plan is built in order to know where to process the different 

queries (on the mobile device or on the cloud).  

4. CLOUD QUERY EXECUTION AND 

COST ESTIMATION 
There is a broad body of work that has been done in optimizing 

cloud query execution, also known as data flow execution [5], [4] 

[11], [12]. While the majority of work has been focused on 

optimizing completion time, with the advent of on-demand 

computing, monetary cost optimization has also been considered 

[5]. No longer must execution resources be algorithmically 

limited as a given, but rather can be scaled according to the query 

at hand, and the constraining budget. A highly elastic query 

implies that a little additional money has a large effect on 

execution time. Such a metric is critical to cost-benefit analysis, 

as it allows the user to make informed decisions regarding 

resources.  

Given the scope and size of the problem, abstraction layers are 

often introduced to help reason about the problem. The principal 

example of this is the Map-Reduce model [5] which has proven 

to be extremely adaptable, although not always trivial to apply to 

a problem. This is evidenced by the large number of high-level 

languages, such as Pig [11] and Hive [13], built on top of the 

Map-Reduce model. 

One common theme is the emergence of directed-acyclic graphs 

(DAGs) as a means for defining and reasoning about cloud 

queries or data flows [4], [5], [14], [12]. In this type of 

formulation, nodes represent operations or calculations, and 

edges represent the flow of data between nodes. Depending of 

the specific formulation, nodes either represent logical operations 

in a plan, or concrete operations to be performed by specific 

nodes on partitions of data. The former is referred to as an 

operator graph, while the latter is called a concrete operator 

graph. 

Given a concrete operator graph, proper statistics about operator 

execution and data cardinality, it is trivial to estimate a schedule 

and thus the cost of execution for a given pricing model. In many 

ways, this abstraction has reduced the problem of cloud query 

execution and cost estimation to a form effectively equivalent to 

RDBMS execution and cost estimation. The primary difference 

compared to the RDBMS case is that the size of the possible 

solution space is much larger given the scalable nature or 

resources. 

Previous solutions have addressed the large search space of 

possible plans through a nested loop approach [5]. This naïvely 

serializes the optimization process by trying to optimally 

schedule a concrete operator graph given an optimal operator 

graph. The outer loop will generate possible resource limits, and 

the inner loop optimally creates a concrete operator graph for the 

given resource limits, and desired constraints. The process itself 

is fairly generic, and can be tweaked for different purposes by 

adjusting the bounds on the available resource search space, the 

optimal stopping criteria, and most importantly, the inner 

optimizer. 

Our proposal is to expand and ensemble existing disjointed 

solutions into a unified system for estimating the cost, and 

executing queries defined as DAGs across heterogeneous clouds. 

Figure 2 - Query (A), Operator Graph (B - D), Possible Execution Plans 
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In particular we aim to not only consider pricing models in 

regards to execution time quantum, but other cloud pricing 

features as well, such as data storage and bandwidth.  

Consider the case of operating on the result of joining two 

relations A and B, where A and B are initially located on 

different clouds. If bandwidth between the clouds is sufficient, 

and bandwidth cost is ignored or is treated uniformly, one might 

generate a plan where nodes intercommunicate between clouds. 

This might even be an optimal plan when just considering 

execution time. By adding in the consideration of bandwidth 

cost, we have significantly changed the calculus of the situation.  

This is specifically true when we consider the wide variation in 

bandwidth pricing between cloud providers. For example 

consider the differences between Amazon EC2 and Rackspace. 

While EC2 charges for almost all forms of traffic coming from a 

node, Rackspace offers an internal network where we can 

communicate with other nodes free of charge [15]. 

Empowered by a canonical form for cloud pricing models at a 

finer granularity, our proposed system might explore a plan 

counter-intuitive to time, where an initial time cost of transferring 

a relation between clouds leads to significant monetary savings 

over time as a result of decreased bandwidth costs overall. 

For example, consider the situation where a relation Tests is 

stripped across several cloud providers, depending on the type of 

test, and where it was conducted. A hospital is considered the 

data-owner of its own tests, and thus the compilation of Tests for 

a patient may be achieved by many different execution plans 

depending on performance and privacy concerns. In Figure 2, we 

present those possible execution plans for a given query (Part A 

in Figure 2. The first possibility (Part B in Figure 2) is to get the 

tuples contained in the cloud providers’ database corresponding 

to the Tests relation and send those to the data-owner where the 

tuple merge, the filtering and the projection will be processed. 

The second possibility (Part C in Figure 2) is to do all the 

filtering and the projection on every cloud provider and send the 

tuples to the data-owner where they will be merged. The third 

possibility (Part D in Figure 2) is to do part of the filtering on 

each cloud provider, send the tuples to the data-owner to merger 

the results, and then, process the remaining filtering and 

projection.  

5. CONCLUSION AND OUTLOOK 
This vision paper presents a proposed architecture to be able to 

optimize the time, energy and money within a Mobile-Cloud 

environment. Determining which query plan should be used to 

know whether to process the query on the mobile device, the data 

owner or the different cloud services is an issue that our approach 

is attempting to solve. Given our proposed three-tiered approach, 

the issue is quite large to consider as a single monolithic 

component. Instead we have chosen to look at our approach as an 

ensemble of two more manageable components. The first 

component looks at semantic caching and defines how we can 

estimate the time and energy needed to analyze the cache (query 

trimming) as well as the time and energy required to process the 

input query on it. The goal of such estimation is to be compared 

with the estimation time, energy and money returned by the 

cloud service. Only then can we make an intelligent decision on a 

query execution plan. In the second component, we present a set 

of techniques to both estimate and optimize the cost of query 

execution in the cloud with respect to both time and money. 

Specifically we are interested in exploiting the various 

capabilities and pricing models available for IaaS and SaaS 

resources. With this architecture, we can now allow the user to 

access data quickly without draining their battery, while 

empowering the data owner to impose response time, energy 

consumption and monetary cost constraints on user queries. 
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