
1

Time-, Energy-, and Monetary Cost-Aware Query*
Processing in a Mobile-Cloud Database Environment

Jonathan Mullen1 Mikael Perrin1 Le Gruenwald1 Laurent d'Orazio2
1 School of Computer Science

University of Oklahoma
Norman, Oklahoma, USA

{jonathan,mikael.perrin,ggruenwald}@ou.edu

2 CNRS, UMR 6158, LIMOS

Blaise Pascal University
Clermont-Ferrand, France

laurent.dorazio@isima.fr

ABSTRACT
Growing demand for more mobile access to data is only matched

by the growth of large and complex data. The availability and

scalability of cloud resources when combined with techniques of

caching and distributed computation provide tools to address

these problems, but bring up new multi-dimensional optimization

challenges such as execution time, monetary cost, and power

consumption. The plethora of various cloud providers with

varying pricing schemes only further complicates the user’s

problem. To address these issues we present a three-tier model

that formalizes the query planning and execution between mobile

users, data owners and cloud providers, allowing state holders to

impose constraints on time, money and energy consumption and

understand the possible tradeoffs between them.

1. INTRODUCTION
Mobility, while not a new concept, has increasingly been the

focus of both academic and industry research. The allure of

mobile computing is that it provides the users access to

computational resources independent of their location. While the

applications and possibilities of ubiquitous access to computing

resources without having to be tethered to a desk are still being

explored, the limitations are fairly well known and force us to

reexamine problems long considered solved in the non-mobile

case. For example, mobile devices commonly face issues of

constrained resources such as energy, processing power, storage

capacity, available memory, network communication and limited

display and input methods. The disproportionate capabilities of

mobile devices, when compared2to traditional servers, are quite

stark; the divide becomes even more apparent when one

considers the capabilities of clustered cloud resources. To

address this disparity between capabilities, we have largely fallen

back onto the client-server model, where the mobile device acts

as a client traveling with the user querying the more capable

cloud servers for complex and intensive needs.

While the simple client-server model is well understood it does

not fully address the advantages such as elasticity, or the

challenges such as two-dimensional optimization with respect to

time and money, heterogeneous pricing models, or heterogeneous

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Articles from

this volume were invited to present their results at The 40th International Conference

on Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.

capabilities. These challenges often make it hard for users of

cloud services to understand the cost associated with query, or

the possible tradeoff between cost and performance.

For example, consider a doctor who wants to retrieve all the

patient information on his/her mobile device. The patient data is

spread among several databases, some of which may reside on

the data-owners hardware (database servers owned by the

organization providing the service), while others could be spread

across various cloud providers. Furthermore, the compilation of

this data can be computation and data intensive. The problem is

further complicated by the fact that in addition to considering the

constraints of client and server resources, one must also consider

the elastic capabilities and pricing of cloud services.

The goal of this paper is to provide our vision for designing a

system that not only effectively utilizes the unique capabilities of

mobile and cloud resources by allowing for one to easily take

advantage of the elastic nature of the cloud in order to retrieve

data, but also to respect the constraints of time, energy on the

mobile device and monetary cost to use the different cloud

services.

The rest of the paper is organized into the following sections. In

Section 2, we present our proposed three-tier architecture. In

Sections 3 and 4, we discuss our ideas and associated research

challenges on caching and query cost estimation strategies on the

mobile devices and query cost optimization strategies on clouds

to reduce the amount of time, energy and money necessary for a

given query. Finally in Section 5, we provide our conclusions.

2. CLIENT-SERVER-CLOUD

ARCHITECTURE3
To address the problems of elastic execution, cost estimation,

data locality common in interactions that involve mobile users

querying data owners who utilize cloud service providers, we

propose a three-tier architecture as described in Figure 1 -

Proposed Architecture. The first tier, or mobile devices,

represents the end user where queries are posed and results are

expected. While mobility is not inherently part of our

architecture, the assumption is that end user devices will be

resource constrained (energy, processing power and bandwidth).

The second tier, or data owner, represents statically available

non-elastic resources controlled by the owner of the data on

which the query is being posed. Lastly, the third tier is the cloud

*

This work is partially supported by the National Science Foundation Award No.

1349285

2

services tier comprised of elastic cloud resources, to which the

data owner has access.

For illustration, here we use a hospital application as an example

of the three-tier architecture. Imagine a hospital director needing

to look up doctor and project information using a tablet in a

meeting; this would be the mobile tier. The hospital likely has

some existing server infrastructure with physical limitations.

These resources are not elastic; adding more server capacity

would require both upfront capital for a new server in addition to

any assembly, shipping and configuration lead time. These static

hospital resources would be the data owner tier. To address burst

computation needs, the hospital utilizes various IaaS, PaaS and

SaaS [1] as dictated by their demands. Unlike the constrained

data owner resources, these cloud resources are elastic in nature,

meaning they can easily be scaled up, or down as required.

Usually this will involve some sort of pricing scheme based on

the resources utilized; this is the cloud resources tier.

On the mobile device, a well-known technique used to reduce the

number of interactions with a server is called semantic caching

[2]. Semantic caching involves not only storing the results from

previous queries, but also maintaining the metadata associated

with each query. With this metadata, further server

communication is either eliminated when the result of a query is

stored entirely in cache, or reduced when the cache contains only

a part of the data required by the query. To determine this, the

technique of query trimming like the one described in [3] is used

to compare the input query with the query contained in each

metadata entry. In the case when the cache partially contains the

query result, a probe query will be created to retrieve the existing

data from the mobile cache, and a remainder query will be

created to retrieve the data not contained in the mobile cache.

The remainder query will be sent to the data owner for execution.

This query interaction, be it a full query, a remainder query, or a

prefetched query, between the mobile device and the data owner

constitutes the primary interaction between the two macro

components of our solution. The mobile component is

responsible for maintaining a local cache and deciding what

query to evaluate. The data-owner and cloud component, in

addition to providing execution estimation to the mobile

component for use in query planning, is also responsible for

evaluating the mobile query while efficiently utilizing the

available cloud resources. Just as the mobile component must

consider optimizing for both time and energy, the cloud

component must consider optimizing for time and budget. With

this comes the concept of elasticity. Elasticity defines the effect

that additional resources or money has on the completion time of

a query. For example, it may be preferable to focus budget

resources on executing a highly elastic query where 50% increase

in budget decreases execution time by 200%, rather than a

weekly elastic query where decreasing the budget by 50% only

decreases completion time by 10%.

While many works have studied cloud data management and

query execution, the scope of investigation is usually limited in

the sense that only execution time is optimized [4]; or compute

resources or cloud-pricing models are considered homogeneous

[5]. By extending the previous works on these disjoint problems

we present a single solution that considers time and budget across

heterogeneous clouds, with heterogeneous pricing models,

allowing both mobile user and data-owner to access their data

while providing fine grain control of execution time and cost.

3. MOBILE CACHE AND ESTIMATION
Introducing semantic caching makes it mandatory to find a trade-

off between running the query on the cloud and running the

query on the mobile with respect to efficiency, money and energy

consumption. In particular, it is necessary to estimate the

amounts of time and energy to be spent to retrieve data on the

mobile device and to compare them with the time and energy to

retrieve data on the cloud. In some cases, these amounts of time

and energy consumed can be bigger than those incurred for

processing the whole query on the cloud [6]. Therefore, it is

important to estimate the costs in terms of time, energy and

money for each query.

We envision that there are two cache structures on a mobile

device: query cache and estimation cache. The query cache may

be based on semantic caching which can be implemented using

the definitions, structures and algorithms given in existing works,

such as [2], [3], [7], [8], [9], [10]. With this, an input query may

be answered using some available cache entries and therefore,

only the missing data will be requested from the cloud. For

example, if the input query has the predicate “Patient.Age < 28”

and one entry in the query cache corresponds to the predicate

“Patient.Age < 29”, where Patient is a relation in the database

and Age is an attribute in this relation, then it is possible to

answer the input query thanks to the content of the query cache.

In a semantic cache, each entry contains the information items on

Figure 1 - Proposed Architecture

3

the corresponding queries (relation, attributes, time stamp,

predicates, etc.) and a semantic region where the result tuples are

stored.

For each cache entry, it is necessary to check that the relation and

the attributes of the segment in the query cache are the same as

those of the given query. Also, the query predicates has to be

analyzed in order to know if the query cache content answers the

input query completely, partially, or not at all. Once we know

which entries can be used to answer the query on the mobile

device, we need to process each semantic region to retrieve the

wanted tuples. The time and energy to retrieve those data depend

on the structure used to store the tuples in each region. However,

if the query is processed on the mobile device, no money is paid

to the cloud provider to retrieve the data. Consequently, it is

important to ask the cloud to provide an estimation of how much

time and money it will take to process the query on its resources.

With this estimation, the mobile device will then estimate the

energy it will consume to process the query on those cloud

services.

Since computing this estimation requires time, energy and

money, the mobile device can be equipped with an estimation

cache to reduce such overheads. Each estimation cache entry

should contain the time to process the query in seconds, the

energy to process the query in Joules, and the money cost to

process the query in dollars. Once we have analyzed the mobile

device’s cache and we have asked the cloud to provide the cost of

processing such a query on its services, two estimations are

available: one to run the query on the mobile device, and one to

run the query on the cloud. Those estimations are then used to

check whether or not the given constraints on remaining battery

life, money and time can be met. Following this result, the query

plan is built in order to know where to process the different

queries (on the mobile device or on the cloud).

4. CLOUD QUERY EXECUTION AND

COST ESTIMATION
There is a broad body of work that has been done in optimizing

cloud query execution, also known as data flow execution [5], [4]

[11], [12]. While the majority of work has been focused on

optimizing completion time, with the advent of on-demand

computing, monetary cost optimization has also been considered

[5]. No longer must execution resources be algorithmically

limited as a given, but rather can be scaled according to the query

at hand, and the constraining budget. A highly elastic query

implies that a little additional money has a large effect on

execution time. Such a metric is critical to cost-benefit analysis,

as it allows the user to make informed decisions regarding

resources.

Given the scope and size of the problem, abstraction layers are

often introduced to help reason about the problem. The principal

example of this is the Map-Reduce model [5] which has proven

to be extremely adaptable, although not always trivial to apply to

a problem. This is evidenced by the large number of high-level

languages, such as Pig [11] and Hive [13], built on top of the

Map-Reduce model.

One common theme is the emergence of directed-acyclic graphs

(DAGs) as a means for defining and reasoning about cloud

queries or data flows [4], [5], [14], [12]. In this type of

formulation, nodes represent operations or calculations, and

edges represent the flow of data between nodes. Depending of

the specific formulation, nodes either represent logical operations

in a plan, or concrete operations to be performed by specific

nodes on partitions of data. The former is referred to as an

operator graph, while the latter is called a concrete operator

graph.

Given a concrete operator graph, proper statistics about operator

execution and data cardinality, it is trivial to estimate a schedule

and thus the cost of execution for a given pricing model. In many

ways, this abstraction has reduced the problem of cloud query

execution and cost estimation to a form effectively equivalent to

RDBMS execution and cost estimation. The primary difference

compared to the RDBMS case is that the size of the possible

solution space is much larger given the scalable nature or

resources.

Previous solutions have addressed the large search space of

possible plans through a nested loop approach [5]. This naïvely

serializes the optimization process by trying to optimally

schedule a concrete operator graph given an optimal operator

graph. The outer loop will generate possible resource limits, and

the inner loop optimally creates a concrete operator graph for the

given resource limits, and desired constraints. The process itself

is fairly generic, and can be tweaked for different purposes by

adjusting the bounds on the available resource search space, the

optimal stopping criteria, and most importantly, the inner

optimizer.

Our proposal is to expand and ensemble existing disjointed

solutions into a unified system for estimating the cost, and

executing queries defined as DAGs across heterogeneous clouds.

Figure 2 - Query (A), Operator Graph (B - D), Possible Execution Plans

4

In particular we aim to not only consider pricing models in

regards to execution time quantum, but other cloud pricing

features as well, such as data storage and bandwidth.

Consider the case of operating on the result of joining two

relations A and B, where A and B are initially located on

different clouds. If bandwidth between the clouds is sufficient,

and bandwidth cost is ignored or is treated uniformly, one might

generate a plan where nodes intercommunicate between clouds.

This might even be an optimal plan when just considering

execution time. By adding in the consideration of bandwidth

cost, we have significantly changed the calculus of the situation.

This is specifically true when we consider the wide variation in

bandwidth pricing between cloud providers. For example

consider the differences between Amazon EC2 and Rackspace.

While EC2 charges for almost all forms of traffic coming from a

node, Rackspace offers an internal network where we can

communicate with other nodes free of charge [15].

Empowered by a canonical form for cloud pricing models at a

finer granularity, our proposed system might explore a plan

counter-intuitive to time, where an initial time cost of transferring

a relation between clouds leads to significant monetary savings

over time as a result of decreased bandwidth costs overall.

For example, consider the situation where a relation Tests is

stripped across several cloud providers, depending on the type of

test, and where it was conducted. A hospital is considered the

data-owner of its own tests, and thus the compilation of Tests for

a patient may be achieved by many different execution plans

depending on performance and privacy concerns. In Figure 2, we

present those possible execution plans for a given query (Part A

in Figure 2. The first possibility (Part B in Figure 2) is to get the

tuples contained in the cloud providers’ database corresponding

to the Tests relation and send those to the data-owner where the

tuple merge, the filtering and the projection will be processed.

The second possibility (Part C in Figure 2) is to do all the

filtering and the projection on every cloud provider and send the

tuples to the data-owner where they will be merged. The third

possibility (Part D in Figure 2) is to do part of the filtering on

each cloud provider, send the tuples to the data-owner to merger

the results, and then, process the remaining filtering and

projection.

5. CONCLUSION AND OUTLOOK
This vision paper presents a proposed architecture to be able to

optimize the time, energy and money within a Mobile-Cloud

environment. Determining which query plan should be used to

know whether to process the query on the mobile device, the data

owner or the different cloud services is an issue that our approach

is attempting to solve. Given our proposed three-tiered approach,

the issue is quite large to consider as a single monolithic

component. Instead we have chosen to look at our approach as an

ensemble of two more manageable components. The first

component looks at semantic caching and defines how we can

estimate the time and energy needed to analyze the cache (query

trimming) as well as the time and energy required to process the

input query on it. The goal of such estimation is to be compared

with the estimation time, energy and money returned by the

cloud service. Only then can we make an intelligent decision on a

query execution plan. In the second component, we present a set

of techniques to both estimate and optimize the cost of query

execution in the cloud with respect to both time and money.

Specifically we are interested in exploiting the various

capabilities and pricing models available for IaaS and SaaS

resources. With this architecture, we can now allow the user to

access data quickly without draining their battery, while

empowering the data owner to impose response time, energy

consumption and monetary cost constraints on user queries.

6. REFERENCES
[1] P. Mell and T. Grance, "The NIST definition of cloud

computing," NIST, vol. 53.6, p. 50, 2009.

[2] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava and M.

Tan, "Semantic data caching and replacement," VLDB, vol.

96, pp. 330-341, 1996.

[3] Q. Ren, M. H. Dunham and V. Kumar, "Semantic caching

and query processing," Knowledge and Data Engineering,

IEEE Transactions on, vol. 15.1, pp. 192-210, 2003.

[4] N. Bruno, S. Jain and J. Zhou, "Continuous cloud-scale

query optimization and processing," in Proceedings of the

VLDB Endowment, 2013.

[5] H. Kllapi, E. Sitaridi, M. M. Tsangaris and Y. Ioannidis,

"Schedule optimization for data processing flows on the

cloud," in ACM SIGMOD International Conference on

Management of data, 2011.

[6] A. Carroll and G. Heiser, "An Analysis of Power

Consumption in a Smartphone," in USENIX annual

technical conference, 2010.

[7] B. Þ. Jónsson, M. Arinbjarnar, B. Þórsson, M. J. Franklin

and D. Srivastava, "Performance and overhead of semantic

cache management," ACM Transactions on Internet

Technology (TOIT), vol. 6.3, pp. 302-331, 2006.

[8] P. Godfrey and J. Gryz, "Answering queries by semantic

caches," Database and Expert Systems Applications, vol.

Springer Berlin Heidelberg, pp. 485-498, 1999.

[9] K. C. Lee, H. V. Leong and A. Si, "Semantic Query Caching

in a Mobile Environment," ACM SIGMOBILE Mobile

Computing and Communications Review, vol. 3.2, pp. 28-

36, 1999.

[10] B. Chidlovskii and U. M. Borghoff, "Semantic caching of

Web queries," VLDB, vol. 9.1, pp. 2-17, 2000.

[11] C. Olston, B. Reed, U. Srivastava, R. Kumar and A.

Tomkins, "Pig latin: a not-so-foreign language for data

processing," in ACM SIGMOD international conference on

Management of data, 2008.

[12] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D.

Shakib, S. Weaver and J. Zhou, "SCOPE: easy and efficient

parallel processing of massive data sets," in Proceedings of

the VLDB Endowment, 2008.

[13] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S.

Anthony, H. Liu, P. Wyckoff and R. Murthy, "Hive: a

warehousing solution over a map-reduce framework," in

Proceedings of the VLDB Endowment, 2009.

[14] K. Morton, M. Balazinska and D. Grossman, "ParaTimer: a

progress indicator for MapReduce DAGs," in ACM

SIGMOD International Conference on Management of data,

2010.

[15] "Rackspace, the open cloud compagny," Rackspace, US inc,

[Online]. Available: http://www.rackspace.com. [Accessed

May 2014].

