
Continuous Weighted-Sum based Multi-Objective Query
Optimization on Mobile Cloud DataBase

ABSTRACT

Optimizing queries on mobile cloud databases has to consider several
objectives simultaneously, such as query execution time and monetary
cost occurred on the mobile device to execute queries. There exist
multi-objective query optimization techniques for cloud databases, but
none deals with multi-objective query re-optimization that
dynamically modifies the query plan to incorporate new statistics
gathered during the query execution for performance improvement.
Besides that, the existing techniques require user interaction during the
query optimization process which produces extra cost. To fill this gap,
in this paper, we vision an approach to optimize a query plan based on
time and monetary cost and re-optimize the query plan during the
execution without user interaction. In our approach, we first find a
qualified query according to the objective preference set by the user
before the query optimization process and adjust the query plan by
using the actual running statistics collected during the execution.

1. INTRODUCTION

In a mobile-cloud database environment, a user issues queries from a
mobile device to obtain data stored on the cloud . In order to execute a
query, three different costs occur: the monetary cost of query execution
on the cloud, the overall query execution time, and the energy
consumption on the mobile device where the query might be executed.
These three costs constitute the three cost objectives that the query
optimizer needs to minimize in order to choose the optimal query
execution plan (QEP). In traditional database systems, the query
optimizer chooses the query plan with the minimum cost and the
overall objective of the optimization is to minimize the query response
time. However, mobile-cloud database systems are provided to users
as on-demand services where users are charged for the actual usage of
the services. The users do not need to pay a large amount of money to
purchase the infrastructure to build the database system, but they pay
a small amount of money by the time period of using the system. For
example, Amazon Web Service (AWS) charges their users $0.0065 per
hour for renting a certain type of servers [3]. The user then considers
not only if the query response time is satisfied, but also whether the
execution of the query is within the budget. Due to the elasticity of
hardware in the mobile-cloud database system, the query optimizer
should consider the monetary cost in addition to the query response
time when deciding which QEP should be chosen to be executed in
order to deliver the query result within the user’s response time and
budget constraints. This decision process under the traditional
interaction model usually requires user’s input of their objective

preference before the right QEP is chosen. However, the process is
slowed down on user’s pending inputs.

There existing some techniques that optimize the query processing
based on multi-objectives , but some of them ignore the elasticity of
the hardware [5] which is essential in a cloud environment and some
of them made assumption or require user’s input [1] [6] [7] about the
preferences of the objectives and users are not allowed to change
these preferences. In our approach, the searching algorithm enable
searching the optimal QEP on all the combination of containers and
we introduce a new interaction model that allows user’s preference be
preset before the optimization process so that any user’s pending
input during the processing is not necessary.

2. CONTINUOUS WEIGHTED-SUM BASED

MULTI-OBJECTIVE QUERY
OPTIMIZATION

An example architecture of a mobile-cloud database environment is
shown in Figure 1. The users use mobile devices to obtain data. This
data is either stored in the cloud or retrieved from a cache on the
mobile devices.
In our previous work, to improve the interaction model of the multi-
objective query optimization, we presented the Normalized Weighted
Sum Algorithm (NWSA) [10]. This algorithm allows the user to
make a decision on the QEP based on multi-objectives but does not
burden the user with the task of selecting a QEP out of a huge amount
of options.

For example, suppose that a medical doctor would like to retrieve a
patient’s information from our database system. A typical following
query is issued:

select *
from patient_info, patient_data
where patient_info.name=’Jone’ AND patient_data.last_exam <=
'1998-09-16'

Chenxiao
Wang1

Florian Helff1 Merrien Maxime P1 Jason Arenson1 Le Gruenwald1 Laurent d'Orazio2

 1 School of Computer Science
University of Oklahoma

Norman, Oklahoma, USA
{fhelff, chenxiao, maxime.p.merrien-1, arensonjt,

ggruenwald}@ou.edu

2 CNRS, UMR 6074, IRISA
Rennes 1 University

Lannion, France
laurent.dorazio@univ-rennes

1.fr

Figure 2. A Example of query operator DAG converted from the
query

After this query is submitted, it will be first convert to different
operators as seen in Figure 2. Each node represent an operator compiled
from the query and will be then assigned to different containers. The
arrows represent the data processing flow. Suppose we have 2
containers available to which each of the operator can be assigned.
Container 1 is able to process the whole query within 10 seconds with
a price of $20 per second, and Container 2 takes 20 seconds to process
the query but with a cheaper price of $5 per second. Assigning these
operators to Containers 1 or 2 will result in different times and monetary
costs for the query plan. In addition, if we update the statistics of the
query execution after the FIL operator, we will find that the actual data
volume is larger than the estimation, so the JOIN operator might
migrate from Container 1 to Container 2.

And in general cases the doctor need to decide which Container he/she
would like to choose since one option is quicker in response time and
another one is cheaper in price. Assuming the doctor is currently
working in the ER room and has only several seconds to retrieve the
patient’s data, the first option might be a better choice. In our approach,
we handle this situation. First, our algorithm is able to find suitable
QEPs which meet the constraints of the user. Secondly, a QEP will be
selected without interacting with the users. In this example, the doctor
does not need to select which option to execute the plan. The QEP will
be selected automatically according the previous Weight Profile
settings.

 In the following sections, we briefly present our previous research on
the interaction model of the user and mobile-cloud database system.
Additionally, we present an algorithm and describe how to optimize
the queries on the cloud with the new interaction model.

2.1 Multi-Objective QEP formation

Assigning different operators to different containers is also known as
a scheduling problem. A QEP is also known as a schedule and a
schedule contains several assignments. An assignment includes the
information of the operator and its assigned container plus the
scheduled starting time and estimated ending time for executing this
operator. Typically, a local optimal schedule is generated by a greedy
algorithm and an optimizing algorithm is applied to optimize the
allocation in the schedule so that a near optimal schedule can be found.
However, in this work, we generate only a local optimized schedule.
By referencing to the results reported in [1], a local optimal schedule
is not significantly improved by applying the generic optimization
algorithm, which is Simulation Annealing used in this work, and
applying the generic optimization algorithm generates extra noticeable
overhead. We adopt these results and do not apply any optimization
algorithms after all the operators are assigned.
An assignment of an operator to a container can be modeled as follows:

assign < s'(, 𝐶+, 𝑡-./0., 𝑡1'2 >

where 	𝐬𝐧𝐢 denotes the operator 𝐬𝐧 in the i-th optimization round; 𝐂𝐣
denotes the container; and 𝐭𝐬𝐭𝐚𝐫𝐭, 𝐭𝐞𝐧𝐝 denote the start and end
timestamps of the operator’s execution.

Before the assignment, the Unit price of using each container is set and
a set of system-wide parameters are set for each container and these
parameters indicate the CPU usage and time consumption of each
container to process a certain amount of data. For example, processing
1KB of data in Container 1 costs 0.1 seconds and occupies 1% of CPU
usage. The estimation of how much execution time and percentage of
CPU usage of executing an operator on each of the containers is made
based on these parameters and the data size each operator is estimated
to process. Since the elasticity of the cloud environment and the
containers can be added or reduced at any time, this estimation has to
be done when there are new incoming containers. In Figure 3, for
example, the estimation of execution operator TS1 on Container 1 will
cost 0.06 seconds and 12% of the CPU usage.

Figure 1. Mobile - Cloud Database Environment

TS1

TS2
FIL

JOIN

SEL

Figure 3. An example of the estimation

Assigning an individual operator to a container can be based on several
different criterions. An operator can always be assigned to a container
that has the minimum current CPU usage to balance the CPU
utilization or to a container that has the minimum unit price to
minimize the monetary cost. Here, each operator is assigned to the
container which has the minimum estimated completion time. Note
that, if the assigned container is congested, which means the CPU
usage is over 100%, the completion time is adjusted by multiplying it
with the CPU usage to influence the overlapping of multiple operators
at the same time. The reason of choosing the container with the
minimum estimated completion time is according to the experiment
results reported in [1]. The results show that among 8 different
assignment algorithms, the performance of this assignment stays
between the best and worst cases in both time and monetary cost. This

means this kind of assignment algorithm takes both time and monetary
cost into consideration and balance the trader-offs between query
response time requirement and budget.

The assignment starts with the operators without any dependencies.
The assigned container is chosen based on the above criteria. Then the
operator is assigned the current timestamp as 𝒕𝒔𝒕𝒂𝒓𝒕 and 𝒕𝒆𝒏𝒅 is
computed by propagating the estimated execution time to the 𝒕𝒔𝒕𝒂𝒓𝒕.
Then these operators are eliminated and the new operators become
ready to be assigned as the dependencies change. This process repeats
until all the operators are assigned and finally, a schedule is formed
and the total time and monetary cost of the schedule can be obtained.
This procedure starts with using one container and repeats till all the
containers has been used. Each time a schedule is formed, the
estimated execution time and monetary cost are checked. If either of
them violates the user’s constraint, this schedule will not be considered
as a candidate. A Weight Profile will be used at this time to select one
schedule or QEP from the candidates and sent to execution. A Weight
Profile is a set of weights that represents user’s preference on the
objectives and this setting is applied to a decision algorithm introduced
in our previous work [10] which decides the selection of one QEP
among the candidate QEPs. Candidate QEPs are Pareto optimal query
plans and require further selection. For example, if a user set a high
preference on monetary cost, a QEP with lower price but slow in query
response time will be selected.

2.2 Continuous Optimization

The execution of the QEP in our approach is completed stage by
stage. A stage is formed by several executing operators.
So far we have defined each stage to contain only one operator. The
reason of executing the QEP stage by stage is to get more accurate
estimation of the operators. As mentioned in Section 2.1, estimation
is very crucial to the assignment of operators and containers which
influences the overall cost the QEP. The estimation is made based on
the statistics of the data, and the more accurate the statistics is, the
more accurate the estimation can be. Using the actual statistics
instead of the estimated statistics improves the estimation. After the
completion of a stage, the statistics are updated with the actual
running statistics collected from the finished stage. A new whole
query plan is re-generated and combined with the old query plan. The
statistic on data size largely impacts the performance of the query
plan. As mentioned in Section 2.1, the assignment of each operator is
based on its estimation and this estimation is highly based the data
size. For example, when the “where a<500” clause in the query is
processed, there is a Filter Operator generated for this clause. When
the initial estimation is made before the query execution, the
estimated number of rows for “a<500” could be 100,000 and the data
size is 50MB. This number is changed if we update the statistics with
the actual running statistics of 30,000 rows after the Filter operator is
executed. By applying this change, the data size following the
operator changes from 50MB to 16MB and the estimation of time
and CPU usage on every containers is changed, which will impact the
decision of assignment of this operator to the container.

2.3 Query processing re-optimization
When to pause the execution for re-optimization and how to form a
stage are the issues that need to study further. This is because the
re-optimization causes extra overheads especially in the queries that
are executed within a short time. However, in this early version of
our system, we force the query optimizer to do the re-optimization.

Operator Container 1 Container 2 Container 3

TS1 (0.06, 12) (0.07, 15) (0.06, 20)

FIL1 (0.10, 16) (0.20, 19) (0.50, 17)

Algorithm: Continuous Optimization
INPUT:
Sql: query
CONST: two-dimensional variable containing time and money
constraints
C: a set of containers and each container has the percentage of
current CPU usage and the network bandwidth.
OUTPUT:
Result: the result of the query

1. Ops <- compile query to get its set of compiler-
generated

2. operators
3. Operator_Tree <- generate a multi-staged Operator

tree from
4. the set of operators Ops
5. for each stage in the multi-staged Operator-Tree
6. G <- map each stage in Operator-Tree
7. and form a dataflow graph
8. Estimate the Operator Tree
9. Candidate_Optimized_Schedule<-assign Operators

 to fastest container to form the schedule
10. Optimized_Schedule<-apply Weight Profile to

 select optimized schedule
11. Result <- execute the current stage of

 Optimized_Schedule
12. Optimizer_Operators <- Eliminate the finished

 operators from the Operator_Tree
13. if (Reoptimization_Policy = true)
14. update constraints and operator statistics
15. end if
16. end for
17. return Result

Figure 4. Continuous Optimization Algorithm

We have developed new algorithm that adopts the features of multi-
objective optimization and continuous-optimization. As we can see in
Figure 3, when a query is received, it is parsed, optimized and
represented in an operator tree which contains the physical operators
of the query plan (Line 1). This query processing so far is the same as
the query processing in traditional database systems. After that, the
operators are estimated for the cost and assigned to the containers to
form a schedule(s) by using the technique discussed in Section 2.1
(Lines 8-10). One schedule is then selected by applying the Weight
Profile (Lines 10) After that, each operator is executed based on the
schedule and the execution is paused at the end of the stage and the
statistics are updated. For each table, the updated statistics include the
number of rows and the data size of the table, and for each column, the
cardinality and the min and max values of the column is updated. Then
the whole query plan is generated and the remaining operators in the
unfinished stage are replaced with the new operators in the re-
generated query plan. These steps repeat for each stage until all the
operators are executed.

3. Research Challenges and Discussion
3.1 Scheduling Problem

As discussed in Section 2.1, a schedule is formed by assigning
different operators to different containers. This is known as a NP-
complete [8] problem in optimization and this problem is also applied
to other research fields. Our approach only uses the local optimal
solution as the answer and adopts the results in [1]. Thus there is a lot
of space for improvement to get an optimal schedule at the initial place
Although there are some algorithms targeting this problem
[11][12][13], to get a global optimal schedule with little overhead at
the beginning is still very challenging.

3.2 Accurate Estimation

In addition, since the operator-container assignment is largely
influenced by the estimation of the data, to get an accurate estimation
is not easy to do. Though we use continuous optimization to use actual
running statistics to replace the estimated statistics, this procedure is
very time-consuming and generates a significant overhead. How to
predict the statistics of the data with a low overhead is another
challenge.

3.3 Re-Optimization Point

Besides that, as mentioned in Section 2.2, how to efficiently form a
“stage” is very crucial in continuous-optimization procedure. Too
frequent re-optimization result in a large amount of overhead and less
frequent re-optimization lose accurate statistics. There is research [4]
on this topic and discussed when to do the re-optimization. However,
this discussion is under traditional database system. In our case, there
will be more challenges in mobile-cloud database environment.

4. Conclusion and Future Work

This paper present our apporach in query optimization with several
features. First, a new user interaction model is introduced so that any
user input during the query optimization process is not required. Insead
we use preference settings known as Weight Profiles to decide QEP
selection. Second, an algorithm is presented features in both multi-
objetive and continous optimization. The goal of this algorithm is to
search for a QEP both satisfies multi-objective and the execution cost
is reduced by adjusting the QEP during the execution. We vision our
algorithm here and there will be experiments to validate our algortihm
in the future.

5. References

[1] Kllapi, H., Sitaridi, E., Tsangaris, M. M., & Ioannidis, Y.

Schedule optimization for data processing flows on the cloud. In
Proceedings of the 2011 International Conference on
Management of Data,SIGMOD’11. (June 2011) 289-300

[2] Bruno, N., Jain, S., & Zhou, J. Continuous cloud-scale query
optimization and processing. In Proceedings of the VLDB
Endowment, 6(11), 961–972.

[3] Wu, W., Naughton, J. F., & Singh, H. Sampling-Based Query Re-
Optimization. CoRR, abs/1601.05748.

[4] Y. Watanabe and H. Kitagawa, "Adaptive Query Optimization
Method for Multiple Continuous Queries," 21st International
Conference on Data Engineering Workshops (ICDEW'05), 2005,
1242-1242.

[5] Meister, A., Breß, S., & Saake, G. (2014). Cost-aware query
optimization during cloud-based Complex Event Processing.
Lecture Notes in Informatics (LNI), In Proceedings - Series of the
Gesellschaft Fur Informatik (GI), 705–716.

[6] Jongwuk Lee, Gae-won You, and Seung-won Hwang.
Personalized top-k skyline queries in high-dimensional space.
Information Systems, 34(1), 2009

[7] Donald Kossmann, Frank Ramsak, and Steffen Rost. 2002.
Shooting stars in the sky: an online algorithm for skyline queries.
In Proceedings of the 28th international conference on Very
Large Data Bases (VLDB '02). 2002,VLDB Endowment 275-286.

[8] R. L. Graham. "Bounds on Multiprocessing Timing Anomalies".
SIAM Journal of AppliedMathematics, 17(2):416–429

[9] Mengmeng Liu, Zachary G. Ives, and Boon Thau Loo. Enabling
Incremental Query Re-Optimization. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD
'16). 1705-1720.

[10] F. Helff, L. Gruenwald and L. d'Orazio, "Weighted Sum Model
for Multi-Objective Query Optimization for Mobile-Cloud
Database Environments," In Proceedings of the Workshops of the
EDBT/ICDT 2016 Joint Conference (March 2016) Volume 1558

[11] Dokeroglu,T.,Sert, A.,Cinar, S."Evolutionary Multiobjective
Query Workload Optimization of Cloud Data Warehouses," The
Scientific World Journal, vol. 2014,

[12] T. M. Blackwell , Peter J. Bentley, Dynamic Search With
Charged Swarms, In Proceedings of the Genetic and
Evolutionary Computation Conference, (July 2002) 19-26

[13] Immanuel Trummer and Christoph Koch.Approximation
schemes for many-objective query optimization. In Proceedings
of the 2014 ACM SIGMOD International Conference on
Management of Data (SIGMOD '14).1299-1310

