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ABSTRACT 

Optimizing queries on mobile cloud databases has to consider several 
objectives simultaneously, such as query execution time and monetary 
cost occurred on the mobile device to execute queries. There exist 
multi-objective query optimization techniques for cloud databases, but 
none deals with multi-objective query re-optimization that 
dynamically modifies the query plan to incorporate new statistics 
gathered during the query execution for performance improvement. 
Besides that, the existing techniques require user interaction during the 
query optimization process which produces extra cost. To fill this gap, 
in this paper, we vision an approach to optimize a query plan based on 
time and monetary cost and re-optimize the query plan during the 
execution without user interaction. In our approach, we first find a 
qualified query according to the objective preference set by the user 
before the query optimization process and adjust the query plan by 
using the actual running statistics collected during the execution. 

 

1. INTRODUCTION 

In a mobile-cloud database environment, a user issues queries from a 
mobile device to obtain data stored on the cloud . In order to execute a 
query, three different costs occur: the monetary cost of query execution 
on the cloud, the overall query execution time, and the energy 
consumption on the mobile device where the query might be executed. 
These three costs constitute the three cost objectives that the query 
optimizer needs to minimize in order to choose the optimal query 
execution plan (QEP). In traditional database systems, the query 
optimizer chooses  the query plan with the minimum cost and the 
overall objective of the optimization is to minimize the query response 
time. However, mobile-cloud database systems are provided to users 
as on-demand services where users are charged for the actual usage of 
the services. The users do not need to pay a large amount of money to 
purchase the infrastructure to build the database system, but they pay 
a small amount of money by the time period of using the system. For 
example, Amazon Web Service (AWS) charges their users $0.0065 per 
hour for renting a certain type of servers [3]. The user then considers 
not only if the query response time is satisfied, but also whether the 
execution of the query is within the budget. Due to the elasticity of 
hardware in the mobile-cloud database system, the query optimizer 
should consider the monetary cost in addition to the query response 
time when deciding which QEP should be chosen to be executed in 
order to deliver the query result within the user’s response time and 
budget constraints. This decision process under the traditional 
interaction model usually requires user’s input of their objective 

preference before the right QEP is chosen. However, the process is 
slowed down on user’s pending inputs. 
 
There existing some techniques that optimize the query processing 
based on multi-objectives  , but some of them ignore the elasticity of 
the hardware [5] which is essential in a cloud environment and some 
of them made assumption or require user’s input [1] [6] [7] about the 
preferences of the objectives and users are not allowed to change 
these preferences. In our approach, the searching algorithm enable 
searching the optimal QEP on all the combination of containers and 
we introduce a new interaction model that allows user’s preference be 
preset before the optimization process so that any user’s pending 
input during the processing is not necessary. 
 
2. CONTINUOUS WEIGHTED-SUM BASED 

MULTI-OBJECTIVE QUERY 
OPTIMIZATION 

An example architecture of a mobile-cloud database environment is 
shown in Figure 1. The users use mobile devices to obtain data. This 
data is either stored in the cloud or retrieved from a cache on the 
mobile devices. 
In our previous work, to improve the interaction model of the multi-
objective query optimization, we presented the Normalized Weighted 
Sum Algorithm (NWSA) [10]. This algorithm allows the user to 
make a decision on the QEP based on multi-objectives but does not 
burden the user with the task of selecting a QEP out of a huge amount 
of options. 
 
For example, suppose that a medical doctor would like to retrieve a 
patient’s information from our database system. A typical following 
query is issued: 
 
select *  
from  patient_info, patient_data  
where patient_info.name=’Jone’ AND patient_data.last_exam <= 
'1998-09-16'  
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Figure 2. A Example of query operator DAG converted from the 
query 

After this query is submitted, it will be first convert to different 
operators as seen in Figure 2. Each node represent an operator compiled 
from the query and will be then assigned to different containers. The 
arrows represent the data processing flow. Suppose we have 2 
containers available to which each of the operator can be assigned. 
Container 1 is able to process the whole query within 10 seconds with 
a price of $20 per second, and Container 2 takes 20 seconds to process 
the query but with a cheaper price of $5 per second. Assigning these 
operators to Containers 1 or 2 will result in different times and monetary 
costs for the query plan. In addition, if we update the statistics of the 
query execution after the FIL operator, we will find that the actual data 
volume is larger than the estimation, so the JOIN operator might 
migrate from Container 1 to Container 2. 

And in general cases the doctor need to decide which Container he/she 
would like to choose since one option is quicker in response time and 
another one is cheaper in price. Assuming the doctor is currently 
working in the ER room and has only several seconds to retrieve the 
patient’s data, the first option might be a better choice. In our approach, 
we handle this situation. First, our algorithm is able to find suitable 
QEPs which meet the constraints of the user. Secondly, a QEP will be 
selected without interacting with the users. In this example, the doctor 
does not need to select which option to execute the plan. The QEP will 
be selected automatically according the previous Weight Profile 
settings. 

 In the following sections, we briefly present our previous research on 
the interaction model of the user and mobile-cloud database system. 
Additionally, we present an algorithm and  describe how to optimize 
the queries on the cloud with the new interaction model. 
 

2.1 Multi-Objective QEP formation 
 
Assigning different operators to different containers is also known as 
a scheduling problem. A QEP is also known as a schedule and a 
schedule contains several assignments. An assignment includes the 
information of  the  operator and its assigned container plus the 
scheduled starting time and estimated ending time for executing this 
operator. Typically, a local optimal schedule is generated by a greedy 
algorithm and an optimizing algorithm is applied to optimize the 
allocation in the schedule so that a near optimal schedule can be found. 
However,  in this work, we generate only a local optimized schedule. 
By referencing to the results reported in [1], a local optimal schedule 
is not significantly improved by applying the generic optimization 
algorithm, which is Simulation Annealing used in this work, and 
applying the generic optimization algorithm generates extra noticeable 
overhead. We adopt these results and do not apply any optimization 
algorithms after all the operators are assigned. 
An assignment of an operator to a container can be modeled as follows: 
 

assign < s'( , 𝐶+, 𝑡-./0., 𝑡1'2 >  
  
where 	𝐬𝐧𝐢  denotes the operator 𝐬𝐧  in the i-th optimization round; 𝐂𝐣  
denotes the container; and 𝐭𝐬𝐭𝐚𝐫𝐭, 𝐭𝐞𝐧𝐝   denote the start and end 
timestamps of  the operator’s execution.  

Before the assignment, the Unit price of using each container is set and 
a set of system-wide parameters are set for each container and these 
parameters indicate the CPU usage and time consumption of each 
container to process a certain amount of data. For example, processing 
1KB of data in Container 1 costs 0.1 seconds and occupies 1% of CPU 
usage. The estimation of how much execution time and percentage of 
CPU usage of executing an operator on each of the containers is made 
based on these parameters and the data size each operator is estimated 
to process. Since the elasticity of the cloud environment and the 
containers can be added or reduced at any time, this estimation has to 
be done when there are new incoming containers. In Figure 3, for 
example, the estimation of execution operator TS1 on Container 1 will 
cost 0.06 seconds and 12% of the CPU usage. 

 
 

Figure 1. Mobile - Cloud Database Environment  
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Figure 3. An example of the estimation 

 
Assigning an individual operator to a container can be based on several 
different criterions. An operator can always be assigned to a container 
that has the minimum current CPU usage to balance the CPU 
utilization or to a container that has the minimum unit price to 
minimize the monetary cost. Here, each operator is assigned to the 
container which has the minimum estimated completion time. Note 
that, if the assigned container is congested, which means the CPU 
usage is over 100%, the completion time is adjusted by multiplying it 
with the CPU usage to influence the overlapping of multiple operators 
at the same time. The reason of choosing the container with the 
minimum estimated completion time is according to the experiment 
results reported in [1]. The results show that among 8 different 
assignment algorithms, the performance of this assignment stays 
between the best and worst cases in both time and monetary cost. This 

means this kind of assignment algorithm takes both time and monetary 
cost into consideration and balance the trader-offs between query 
response time requirement and budget. 

The assignment starts with the operators without any dependencies. 
The assigned container is chosen based on the above criteria. Then the 
operator is assigned the current timestamp as 𝒕𝒔𝒕𝒂𝒓𝒕  and 𝒕𝒆𝒏𝒅  is 
computed by propagating the estimated execution time to the 𝒕𝒔𝒕𝒂𝒓𝒕.  
Then these operators are eliminated and the new operators become 
ready to be assigned as the dependencies change. This process repeats 
until all the operators are assigned and finally, a schedule is formed 
and the total time and monetary cost of the schedule can be obtained. 
This procedure starts with using one container and repeats till all the 
containers has been used. Each time a schedule is formed, the 
estimated execution time and monetary cost are checked. If either of 
them violates the user’s constraint, this schedule will not be considered 
as a candidate. A Weight Profile will be used at this time to select one 
schedule or QEP from the candidates and sent to execution. A Weight 
Profile is a set of weights that represents user’s preference on the 
objectives and this setting is applied to a decision algorithm introduced 
in our previous work [10] which decides the selection of one QEP 
among the candidate QEPs. Candidate QEPs are Pareto optimal query 
plans and require further selection. For example, if a user set a high 
preference on monetary cost, a QEP with lower price but slow in query 
response time will be selected. 

2.2 Continuous Optimization 
 
The execution of the QEP in our approach is completed stage by 
stage. A stage is formed by several executing operators.  
So far we have defined each stage to  contain only one operator. The 
reason of executing the QEP stage by stage is to get more accurate 
estimation of the operators. As mentioned in Section 2.1, estimation 
is very crucial to the assignment of operators and containers which 
influences the overall cost the QEP. The estimation is made based on 
the statistics of the data, and the more accurate the statistics is, the 
more accurate the estimation can be. Using the actual statistics 
instead of the estimated statistics improves the estimation. After the 
completion of a stage, the statistics are updated with the actual 
running statistics collected from the finished stage. A new whole 
query plan is re-generated and combined with the old query plan. The 
statistic on data size largely impacts the performance of the query 
plan. As mentioned in Section 2.1, the assignment of each operator is 
based on its estimation and this estimation is highly based the data 
size. For example, when the “where a<500” clause in the query is 
processed, there is a Filter Operator generated for this clause. When 
the initial estimation is made before the query execution, the 
estimated number of rows for “a<500” could be 100,000 and the data 
size is 50MB. This number is changed if we update the statistics with 
the actual running statistics of 30,000 rows after the Filter operator is 
executed. By applying this change, the data size  following the 
operator changes from 50MB to 16MB and the estimation of time 
and CPU usage on every containers is changed, which will impact the 
decision of assignment of this operator to the container. 
 

2.3 Query processing re-optimization  
When to pause the execution for re-optimization and how to form a 
stage are the issues that need to study  further.  This is because the 
re-optimization causes extra overheads especially in the queries that 
are executed within a short time. However, in this early version of 
our system, we force the query optimizer to do the re-optimization. 
 

Operator Container 1 Container 2 Container 3 

TS1 (0.06, 12) (0.07, 15) (0.06, 20) 

FIL1 (0.10, 16) (0.20, 19) (0.50, 17) 

Algorithm: Continuous Optimization 
INPUT: 
Sql: query 
CONST: two-dimensional variable containing time and money 
constraints 
C: a set of containers and each container has the percentage of 
current CPU usage and the network bandwidth. 
OUTPUT: 
Result: the result of the query 
 

1. Ops <- compile  query  to get its  set of compiler-
generated 

2. operators 
3. Operator_Tree <- generate a multi-staged Operator 

tree from 
4. the set of operators Ops 
5. for each stage in the multi-staged Operator-Tree 
6.       G <- map each stage in Operator-Tree 
7.       and form a dataflow graph 
8.       Estimate the Operator Tree 
9.       Candidate_Optimized_Schedule<-assign Operators  

      to fastest container to form the schedule 
10.       Optimized_Schedule<-apply Weight Profile to 

                      select optimized schedule 
11.       Result <- execute the current stage of  

                      Optimized_Schedule 
12.       Optimizer_Operators <- Eliminate the finished 

       operators from the Operator_Tree 
13.        if (Reoptimization_Policy = true) 
14.           update constraints and operator statistics 
15.        end if 
16. end for 
17. return Result 

 
 

Figure 4. Continuous Optimization Algorithm  
 

 



We have developed new algorithm that adopts the features of multi-
objective optimization and continuous-optimization. As we can see in 
Figure 3, when a query is received, it is  parsed, optimized and 
represented in an operator tree which contains the physical operators 
of the query plan (Line 1). This query processing so far is the same as 
the query processing in traditional database systems. After that, the 
operators are estimated for the cost and assigned to the containers to 
form a schedule(s) by using the technique discussed in Section 2.1 
(Lines 8-10). One schedule is then selected by applying the Weight 
Profile (Lines 10) After that, each operator is executed based on the 
schedule and the execution is paused at the end of the stage and the 
statistics are updated. For each table, the updated statistics include the 
number of rows and the data size of the table, and for each column, the 
cardinality and the min and max values of the column is updated. Then 
the whole query plan is generated and the remaining operators in the 
unfinished stage are replaced with the new operators in the re-
generated query plan. These steps repeat for each stage until all the 
operators are executed. 

3. Research Challenges and Discussion 
3.1  Scheduling Problem 
 
As discussed in Section 2.1, a schedule is formed by assigning 
different operators to different containers. This is known as a NP-
complete [8] problem in optimization and this problem is also applied 
to other research fields. Our approach only uses the local optimal 
solution as the answer and adopts the results in [1]. Thus there is a lot 
of space for improvement to get an optimal schedule at the initial place 
Although there are some algorithms targeting this problem 
[11][12][13], to get a global optimal schedule with little overhead at 
the beginning is still very challenging. 

3.2 Accurate Estimation 
 
In addition, since the operator-container assignment is largely 
influenced by the estimation of the data, to get an accurate estimation 
is not easy to do. Though we use continuous optimization to use actual 
running statistics to replace the estimated statistics, this procedure is 
very time-consuming and generates a significant overhead. How to 
predict the statistics of the data with a low overhead is another 
challenge.  

3.3 Re-Optimization Point 
 
Besides that, as mentioned in Section 2.2, how to efficiently form a 
“stage” is very crucial in continuous-optimization procedure. Too 
frequent re-optimization result in a large amount of overhead and less 
frequent re-optimization lose accurate statistics. There is research [4] 
on this topic and discussed when to do the re-optimization. However, 
this discussion is under traditional database system. In our case, there 
will be more challenges in mobile-cloud database environment. 
 
 
 
 
 
 

4. Conclusion and Future Work 

This paper present our apporach in query optimization with several 
features. First, a new user interaction model is introduced so that any 
user input during the query optimization process is not required. Insead 
we use preference settings known as Weight Profiles to decide QEP 
selection. Second, an algorithm is presented features in both multi-
objetive and continous optimization. The goal of this algorithm is to 
search for a QEP both satisfies multi-objective and the execution cost 
is reduced by adjusting the QEP during the execution. We vision our 
algorithm here and there will be experiments to validate our algortihm 
in the future. 
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