Wireless Sensor Network for Aircraft Health Monitoring

Haowei Bai

Honeywell Labs 3660 Technology Drive Minneapolis, MN 55418 Phone: 612-951-7107

Email: haowei.bai@honeywell.com

Mohammed Atiquzzaman

School of Computer Science University of Oklahoma Norman, OK 73019-6151 atiq@ou.edu

David Lilja

Electrical Engineering University of Minnesota 200 Union St. SE Minneapolis, MN 55455 lilja@ece.umn.edu

Ad-Hoc Sensor Network

Characteristics

- Each node generates independent data.
- Power is the driving constraint.
- Source-destination pairs are chosen randomly.
- Topology is dynamic.
- Routing could be multihop.
- Need to allocate resource dynamically (rate, power, bandwidth, routes, etc).

Design Challenges

- Limitations of the Wireless Network
 - -packet loss due to transmission errors
 - -frequent disconnections/partitions
 - -limited communication bandwidth
 - -Broadcast nature of the communications
- Limitations Imposed by Mobility
 - -dynamically changing topologies/routes
 - -lack of mobility awareness by system/applications
- Limitations of the Mobile Computer
 - -short battery lifetime

Our Proposed Solutions

Issues		Proposed Solutions
Limitations of	Packet loss due to transmission errors	Error control and anti-
the Wireless		interference (FHSS, OFDM)
Network	Limited communication bandwidth	Using high data rate RF
		technology, e.g., IEEE 802.11a/b
	Broadcast nature of the	MAC protocol in Ad Hoc
	communications	Networks
Limitations	Dynamically changing	Ad Hoc routing
Imposed by	topologies/routes	
Mobility	Frequent disconnections/partitions	MAC, Network
		addressing/membership for Ad
		Hoc network
	Lack of mobility awareness by	Node positioning
	system/applications	
Limitations of	Short battery lifetime	Power-aware algorithms (power-
the Mobile		aw are routing, low-power MAC)
Computer		

- Power-aware routing for Ad Hoc: Reactive routing protocol, which starts to create routes when requested.
- Low-power MAC: sleep and wake-up scheme, which allows a node power itself down when it is neither sending nor receiving.
- **Node positioning**: put node's location (coordinates) as part of its address.

Communication protocol stack

Node Architecture of Ad Hoc Sensor Networks

Honeywell Wireless Sensor Network in Harsh Env.

Multi-chip/board wireless sensor node in our lab for industrial sensing

Voice of the Customer

- · High temperature capability.
- Less weight, improved reliability by eliminating wiring and wiring harnesses issues.
- More sensors onboard for predictive monitoring:
 - Installation cost savings (wiring costs)
 - Wireless sensors in places where wires are impossible (e.g., rotating shaft)
 - Network easily upgraded / modified

Honeywell Technologies

- SOI chip for up to 250C temperature capability.
- Single-chip wireless sensor node.
- Robust FHSS communication.
- Self-powered wireless sensor.
- Power-aware communication protocols.
- Node positioning capability and protocol.
- Node ID and authentication for comm security.
- Sensor network for harsh environment.

Multi-chip system integration

Single-Chip Node

Custom Single-chip Radio

Honeywell Low Cost Single-chip RF Transceiver (GROW Chip)

ASIC Details

Honeywell Single-chip Radio Main Features

RF System

- Fully integrated 418-928 MHz transceiver.
- Binary FSK Modulation.
- Lowest cost fully integrated RF solution requiring minimal external components.
- Programmable data rates up to 56 kbps.
- Programmable modulation frequency up to 2MHz.
- Adjustable Tx power levels from –20dBm up to +4dBm.
- Adjustable on-chip filters.
- Integrated PLL/VCO capable of 2kHz programmable increments.
- Integrated direct conversion receiver with -100dBm sensitivity.
- Low noise figure of Rx path (NF_{RxSYS} < 10dB).
- Capable of frequency agile communications.
- Received Strength Signal Indicator (RSSI) output for link quality indicator.
- Compatible with North American FCC Title 47 Part 15.
- Compatible with European ETS-300-220
- Compatible with United Kingdom MPT 1329/1340

Digital Interface and Functions

- Serial Peripheral Interface for configuration, Tx/Rx data transfer, program Tx power level, and PLL frequency.
- Digital Tx and Rx section with 64 byte FIFO
- 64 bit correlator in Rx
- Encoder and Decoder

CMOS Technology

- Low-power consumption (25 ma)
- < 1.5 μA standby current
- Single supply operation (3.3 2.4 volts).
- Mature 0.35µm CMOS fabrication geometry.

Cost Target

- Changed RF architectures to meet \$5 final assembled Xcvr cost goal.
- Plastic Quad Flat Pack is initial package

Honeywell's Position

- Honeywell already produces RF on a chip.
- Honeywell already produces secure communications.
- SOI is mature and proven, with additional functions and components being added from the DeepTrek DOE program.
- Wireless networks will allow easy addition of sensors for vehicle health management.
- Reduced weight by eliminating electrical harness.

Can bring Honeywell expertise in industrial wireless, mil communications and high temperature / high reliability electronics to bear on wireless sensors.