Effect of SCTP Multistreaming over SatelliteLinks

Mohammed Atiquzzaman
(Co-author: William Ivancic (NASA))
School of Computer Science
University of Oklahoma.
Email: atiq@ieee.org
Web: www.cs.ou.edu/~atiq

12th International Conference on Computer Communications and Networks, Dallas, TX.

Introduction

- TCP is the main transport protocol in the Internet protocol suite
- Original TCP did not perform very well in satellite networks because of errors and long delay.
- Many schemes have been proposed to enhance TCP performance over satellite networks.
 - Window scale option
 - Byte counting
- IETF is developing the Stream Control Transmission Protocol (RFC 2960) for carrying PSTN signaling messages over IP.

Open question: Does SCTP offer any advantage in wireless and satellite networks?
Objectives

Determine suitability and advantages of SCTP’s multistreaming in
- Wireless and satellite networks
- Wireless handheld devices

Outline

- Introduction to SCTP
- Multistreaming
- Multihoming
- Simulation model of multistreaming over satellite links
- Results
Introduction to SCTP

Stream Control Transmission Protocol

- **SCTP (RFC 2960)** is being developed by IETF as a transport protocol for carrying PSTN signaling.
 - Reliable: retransmission of lost packets, ack of packets.
 - Non-duplicated service: uses sequence numbers.
 - In-order delivery: re-sequencing at the destination.
- **Transport layer protocol which operates on top of an unreliable connectionless network layer such as IP.**
 - Transparent to IPv4 or IPv6
- **Key features:**
 - Multistreaming – multiple streams per association
 - Multihoming – multiple IP addresses per host
SCTP in the protocol stack

Upper layer applications
- TCP, UDP, SCTP
- IP
- Link Layer
- Physical Layer

Multihoming
- Supports multiple IP addresses in an association.
- Requires multiple Network Interface Cards – already quite common in laptops !!
 - Can also be accomplished by one NIC using software radio

Node 1
 - Transport address 1
 - Subnet 1

Node 2
 - Transport address 3
 - Subnet 2
 - Subnet 1

Node 1
 - Transport address 2
 - Subnet 2
 - Subnet 1
SCTP Multistreaming over satellite

SCTP Multistreaming

- SCTP accomplishes multistreaming by creating independence between
 - data transmission (uses Transport Sequence Number)
 - data delivery (uses Stream Sequence Number)

![Multistreaming Diagram]

SCTP Packets

- Payload, SACK, etc.
SCTP Multistreaming over satellite

Chunk Type: Payload

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 0    | Reserved|U|B|E|    Length               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TSN               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stream Identifier S | Stream Sequence Number n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Payload Protocol Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/                User Data (seq n of Stream S) /
/                                                  /
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

SCTP Congestion Control

- SCTP congestion control assures that the traffic behaves in the network in the same way as TCP traffic.
- Enables a seamless introduction of SCTP services into existing IP networks.
- SCTP is rate adaptive similar to TCP.
 - Slow Start, Congestion Avoidance, Fast Retransmit
 - Fast Recovery is implemented, but in a slightly different way than TCP.
- Differences with TCP
 - Number of bytes acknowledged to increase cwnd.
 - SACK is mandatory
 - No explicit fast recovery phase
 - Unlimited number of Gap Ack Blocks in SACK
Simulation Setup

Assumptions

- *Ftp* traffic between source and destination.
- Packets are of fixed length of one MTU.
- Upper layer at destination is always ready to accept data.
- Association consists of a number of streams.
- Receiver buffer size = B

Link delay (L1+L2) = 260 msec
Results

Performance Metrics

- **Goodput**: Number of good packets received at the receiver.
- **Optimal receiver buffer size**
 - as a function of
 - Error probability \((e) = \text{Prob. that a packet is lost in the network.} \)
- No packet loss means no blocking at the receiver.
- cwnd initially increases until it reaches B.
- Goodput is limited to B/MTU packets every RTT; Goodput therefore increases linearly with B.

Since goodput is limited to B/MTU packets every RTT; it increases linearly with B.

$s = 4, e = 0, B = 15K$

$s = 4, e = 0$
Packet plot: Congestion Control limited

- Long delays in Retx of lost packets while waiting for DupAcks
- + drop in cwnd due to Retx results in poor goodput when receiver buffer is not a constraint.

\[s = 4, e = 0.01, B = 35K \]

Goodput with errors

- Goodput is limited by the congestion control of SCTP.
- Goodput can only be increased by lowering the error rate
- Goodput initially increases as \(B \) increases when the goodput is constrained by \(B \) (\(a_{rwnd} \) frequently drops below 1 MTU)

\[s = 4, e > 0 \]
- $B=15K$ results in the throughput being constrained by the receiver buffer size.
- a_{rwnd} frequently drops below 1 MTU, and $cwnd$ is restricted to 15K.

$s = 4, e = 0.01, B = 15K$

- $B=35K$ makes the throughput constrained by the congestion control of SCTP.
- a_{rwnd} never drops below 1 MTU.

$s = 4, e = 0.01, B = 35K$
One and four streams: Goodput vs. B

- For small B, multistreaming results in less HOL blocking
 - goodput of 4-streams is higher than 1-stream.
- For large B, the goodput is limited by the congestion control mechanism.

Multistreaming increases goodput for small receiver buffer sizes

Advantage of Multistreaming: High Throughput

- Small Buffer size of 15K shows the advantage of multistreaming with four streams.
- HOL blocking is eliminated as evidenced by the fact that a_rwnd is not a limiting factor.
Optimal Buffer Size

- Optimal Receiver Buffer Size: The size beyond which the a_rwnd never falls below 1 MTU.

Multistreaming reduces receiver buffer requirements.

Conclusions
Conclusions

- Multistreaming increases goodput for small receiver buffer sizes when compared to a single stream (for example, TCP).
- Multistreaming reduces receiver buffer requirements.

Acknowledgements

- NASA Glenn Research Center

Further Information
Dr. Mohammed Atiquzzaman
atiq@ou.edu, (405) 325 8077

These slides are available at
www.cs.ou.edu/~atiq

Thank you